Linux wireless status - June 2008

http://wireless.kernel.org - Shiny new Linux wireless home page!

Quick review:
Industry: FUullMAC / SoftMAC

Problems: Different wireless driver SoftMAC layers, Wireless-
Extensions based on ioctl(), poor vendor relationship

Several SoftMAC stacks --> mac80211
Wireless-Extensions --> ¢fg80211 & nl80211

Since Jan 2006: wireless-dev --> linux-2.6.21-mm cycle
As of May 05 2007: mac80211 in linux-2.6.22 (no drivers!)
What lies ahead: cfg80211 & nI80211 --> Userspace

ubuntu

http://wireless.kernel.org/

FUullMAC Vs SofMAC

Where does the MLME go, hardware or software?
What is the MLME? Does your driver get raw 802.11 frames or raw 802.3 frames?

MLME stands for Media Access Control (MAC) Sublayer Management Entity. MLME is the management entity

where the Physical Layer (PHY) MAC state machine resides. Examples of states an MLME may assist in
reaching:

Authenticate
Deauthenticate
Associate
Disassociate
Reassociate
Beacon

Probe

FullMAC chipset examples: ISL389x (prism54), Marvell Libertas 8388 (Sony PSP, OLPC, Apple iPhone?)

SoftMAC chipset examples: zd1211, bcm43xx, Atheros ar5k family chipsets, Intel iwlwifi, Ralink rt2x00

ubuntu

Different SoftMAC layer mess

Ahh! $@!'$!1%%

ieee80211.sf.net: Intel for ipw2100, ipw2200, then ieee80211softmac was added — originally
SoftMAC layer for bcm43xx

net80211: NetBSD SoftMAC layer used by MadWifi, old islsm (replaced by p54)

mac80211: Shiny new Linux SoftMAC layer, originated as code contributed by Devicescape,

originally called d80211, renamed to mac80211. Tested in linux-2.6.21-mm series, merged now
for linux-2.6.22.

ieee80211softmac drivers: bcm43xx, zd1211rw

ubuntu

Problems with Linux wireless

Wireless-Extensions built on ioctl()

From Linux Device Drivers - 3™ Edition:

”In user space, the ioctl system call has the following prototype:

int ioctl(int fd, unsigned long cmd, ...);

The prototype stands out in the list of Unix system calls because of the dots, which usually mark the
function as having a variable number of arguments. In a real system, however, a system call can'’t
actually have a variable number of arguments. System calls must have a well-defined prototype,
because user programs can access them only through hardware “gates.” Therefore, the dots in the
prototype represent not a variable number of arguments but a single optional argument, traditionally
identified as char *argp. The dots are simply there to prevent type checking during compilation.” ...

"The unstructured nature of the ioctl call has caused it to fall out of favor among kernel developers. Each
loctl command is, essentially, a separate, usually undocumented system call, and there is no way to
audit these calls in any sort of comprehensive manner. It is also difficult to make the unstructured iocil

arguments work identically on all systems; for example, consider 64-bit systems with a userspace
process running in 32-bit mode.”

Future development: cfg80211, nl80211, iw, wpa_supplicant, hostapd, Network Manager

ubuntu

zd1211rw: port to mac80211 complete and merged on 2.6.25

leee80211softmac and bcm43xx driver removed on 2.6.26
Only 1 SoftMAC stack: mac80211

802.11n (HT) support added onto mac8021 by Intel on 2.6.25
lwl4965 first and only 802.11n driver

New rate control algorithm on 2.6.25: PID controller
Regulatory: CRDA

ubuntu

Central Regulatory Domain Agent

Some mac80211 drivers have its own set of regulatory restrictions. All this code has been removed with a basic

set of restrictions remaining in mac80211 (FCC and Japan channels).

Centralize regulatory restrictions instead

Move database out of the kernel (updates through userspace)

Have a simple regulator.txt ASCII file, parsed and stored into regulatory.bin

Sign the database using RSA private key, embed RSA public key

Have a CRDA daemon or CRDA userspace helper, reads regulatory.bin

Kernel queries CRDA daemon/userspace helper and gets back one regulatory domain

regulatory.txt entry for CR:

country CR:

(5170 - 5250 @ 20), (6,
(5250 - 5330 @ 20), (6,
(5735 - 5835 @ 20), (6,
(2402 - 2482 @ 20), (N
() (N/

1
2
3
/A, 20), EDGE-POWER-2
2402 - 2482 @ 20), (N/A, 2

0), EDGE-POWER-2

7), EDGE-POWER-1, NO-HT40
3), EDGE-POWER-1, NO-HT40
0), EDGE-POWER-1, NO-HT40

ubuntu

wireless driver 1

(n80211)

CRDA Dasermon

(dbZbin.py key priv. pem db.txt dbparse. py) -

mac80211 drivers

mac8021 drivers: adm8211, b43, b43legacy, p54, rt2x00, rtl818x, zd1211rw-mac80211, ath5k

The Kinks: mac80211 driver requires v4 firmware. bcm4301 and bcm4303 chipsets (both 802.11b
only) require firmware v3. The driver changes considerably based on firmware. Port of
bcm430[13] 802.11b completed b43legacy. ISL38xx FullMAC and SoftMAC chipsets, vendors
left PCI IDs the same. p54 supports both ISL38xx FullMAC and ISL38xx SoftMAC devices.
Some people claim backward compatibility is broken using SoftMAC driver on FullMAC device,
some others report flawless use of p54.

802.11n:

Vendor support:
Intel, Ralink, (Atheros is coming)
Reverse engineering:

Atheros (HAL), Airgo (TX/RX), Broadcom (driver and firmware), Marvell (eh?), Realtek (?)

ubuntu

Broadcom drivers

Cleanroom reverse engineered. Consists of devices that use two types of firmware: v3 (cores 4 and lower)
and v4 (cores 5 and higher). Requires two different drivers, hence two broadcom mac80211 drivers:

b43legacy — v3 firmware b43 — v4 firmware

SSB: Sonics Silicone Backplane — allows one driver for different buses
Instruction set for firmware reverse engineered!

Different formats for cores 4 and lower and cores 5 and higher.

Strange proprietary instruction set figured out:
http://bcm-v4.sipsolutions.net/802.11/OldMicrocode - cores <= 4 (incomplete)
http://bocm-v4.sipsolutions.net/802.11/Microcode - cores >= 5
Assembler/disassembler:
http://bu3sch.de/gitweb?p=b43-tools.git;a=summary

New planned firmware (no license yet, broadcom looking closely):

http://bu3sch.de/gitweb?p=b43-ucode.git;a=summary

ubuntu

http://bcm-v4.sipsolutions.net/802.11/OldMicrocode
http://bcm-v4.sipsolutions.net/802.11/Microcode

The ath5k wars are over...

Sam Leffler — responsible for 4.2 BSD while at UCB. Worked on free software projects at Lucasfilm, Pixar,
SGI, vmware. Committer to FreeBSD and NetBSD.

Original motiviation: p2p link between Berkely and San Fransisco and "mesh” networks. Project started in
2001.

net80211: started by Atsushi Onoe (~2001) Now at Sony as of 20017?

MadWifi: Sam Leffler ported net80211 to Linux, dual licensed the code. Main components:
ath/ net80211/ hal/

OpenBSD: ar5k by Reyk Floeter

ar5k: started as a GPL program to change regulatory domain on the eeprom using MadWifi. Later Reyk used
that as codebase for an entire HAL replacement. Madwifi ath/ + ar5k = OpenBSD's driver.

OpenHAL.: port of ar5k to Linux by Nick Kossifidis. Previous to this there was an “ath-driver” project. Move
OpenHAL effort to MadWifi.

New goal: kernel inclusion! SFLC gets involved. Then, remove the HAL, and then port the driver to
mac80211.

ath5k: Yay.. license? And then some flamewars... SLFC involved again.

SFLC's role: OpenBSD code OK, OpenHAL code OK, ath5k license OK

ubuntu

What are distributions picking up?

Ubuntu:
Gusty stuck on 2.6.22
Hardy targetting 2.6.24
Intrepid: based on 2.6.26
Fedora:
Fedora 8 on 2.6.23, had ath5k already, gets a lot of updates
Fedora 9 on 2.6.25
Intel provided their own mac80211 releases for their own drivers — not anymore
Better work on a central effort:
http://wireless.kernel.org/en/users/Download

Linux-wireless Compatibility package: For kernels >= 2.6.22. HT support now requires
multiqueue support. Intel recommends it, John uses for Fedora, packaged for Gentoo, ARCH,
and Ubuntu. Packages using nl80211 need to be kept freshly updated as well.

ubuntu

http://wireless.kernel.org/en/users/Download

Free driver development!

Project to start writing drivers for free! Old news? Yes, but better
communication efforts.

http://linuxdriverproject.org

Greg Kroah-Hartman — Hired by Novell to do work fulltime on this project.
Project Manager

Developers

We need to establish hard links between companies and Project Managers

ubuntu

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

