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Preface

{Les inventions qui ne sont pas connues ont toujours plus de
censeurs que d'approbateurs.
Lettres dédicatoires & Monsieur le Chancelier. Blaise Pascal. }

Learning Algol 68 Genie is distributed with Algol 68 Genie, an open source Algol 68 hybrid
compiler-interpreter that can be used for executing Algol 68 programs or scripts. Algol 68
Genie is a new implementation written from scratch, it is not a port of a vintage implemen-
tation. This publication corresponds to Algol 68 Genie Version 3.5. Algol 68 Genie imple-
ments practically full Algol 68 as defined by the Revised Report, and extends that language
to make it particularly suited to scientific computations. This publication provides an in-
formal introduction to Algol 68, a manual for Algol 68 Genie, and a KTEX translation of the
Revised Report on Algol 68. It describes how to use Algol 68 Genie, as well as its features
and incompatibilities, and how to report bugs. Algol 68 Genie is open source software. The
license for Algol 68 Genie is the GNU GPL {C}.

The development of Algol was an international platform for discussing programming lan-
guages, compiler - and program construction, et cetera, and stimulated computer science
as an academic discipline in its own right. The preservation of Algol 68 is important from
both an educational as well as a scientific-historical point of view. Algol 68 has been around
for five decades, but some who rediscovered it in recent years, well aware of how the world
has moved on, had a feeling best described as plus ca change, plus c’est la méme chose.
One of the reasons for this is that Algol 68 introduced a number of concepts that are now
common, for example structured and united values, the possibility to define new types and
operators on them, et cetera.

A more or less comprehensive list of reasons for the continuing interest in Algol 68 { and
preservation of the language } would be:

e Importance to the history of science. As already indicated, the development of Algol
played a role in establishing computer science as an academic discipline in its own
right. Algol 68 was designed by a learned committee whose meeting accounts show
that there was, at times vigorous, debate before Algol 68 was presented. The influ-
ence of Algol is still tangible since it is to this day referred to in teaching material,
discussions and publications. Therefore, knowledge of Algol is required to understand
the current status of computer science.
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* Academic interest. People interested in the design and formal specification of pro-
gramming languages, such as students of computer science, should at an appropriate
moment study Algol 68 to understand the influence it had. Algol 68 lives on not only
in the minds of people formed by it, but also in other programming languages, even
though the orthogonality in the syntax, elegance and security has been mostly lost.

* Practical interest. Algol 68 has high expressive power that relieves you from having
to write all kind of irrelevant technicalities inherent to programming in many other
languages. For programmers, the world has of course moved on, but the reactions to
Algol 68 Genie suggest that many people who have seriously programmed in Algol 68
in the past, only moved to other programming languages because the Algol 68 imple-
mentations they were using were phased out. Algol 68 is a beautiful means to denote
algorithms and it still has its niche in programming small to medium sized applica-
tions for instance in the field of mathematics, or numerical applications in physics -
or chemistry problems.

Though Algol 68 did not spread widely in its day, it introduced innovations that are rel-
evant up to the present. Its expressive power, and its being oriented towards the needs
of programmers instead of towards the needs of compiler writers, may explain why, since
Algol 68 Genie became available under GPL, many appeared interested in an Algol 68
implementation, the majority of them being mathematicians or computer scientists. Some
still run proprietary implementations. Due to this continuing interest in Algol 68 it is ex-
pected that people will be interested in having access to documentation on Algol 68, but
nowadays most material is out of print. Even if one can get hold of a book on Algol 68, it
will probably not describe Algol 68 Genie since this implementation is most likely younger
than such book.

The formal defining document, the Algol 68 Revised Report, is also out of print but a IXTEX
version comes with this publication. The Revised Report ranks among the difficult publica-
tions of computer science and is therefore not suited as an informal introduction. In fact, it
has been said that at the time Algol 68 was presented some fifty years ago, the complexity
of the Revised Report made some people who allegedly did not use Algol 68 believe that the
language itself would be complex as well. That misconception has persisted up to this day
- Algol 68 would be "difficult", "complex" or even "bloated". After reading this publication
you will likely agree that Algol 68 is in fact a relatively lean language that is quite easy to
use.

This publication consists of original Algol 68 Genie documentation and material from var-
ious free or open source publications {A.1} that have been edited and blended to form a
consistent, new publication. This text is in the first place documentation for Algol 68 Ge-
nie; it is neither an introduction to programming nor a textbook for a course in computer
science. Parts I through III are a comprehensive introduction into programming with Al-
gol 68 Genie. Since Algol 68 is nowadays not commonly known and the Revised Report is
terse, it is desirable to have an informal introduction in this documentation. I am aware
that this creates some unevenness in the set-up and level of this publication, but if you
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succeed in programming in Algol 68 using this text, then the objective of this publication
is met.

Algol 68 Genie

The language described in Parts I through III of this publication is that implemented by
Algol 68 Genie available from:

https://jmvdveer.home.xs4all.nl/
Prebuilt binaries, for instance WIN32 binaries for Microsoft Windows, are available from:
https://sourceforge.net/projects/algol68/

but also from for instance Debian (stable), Ubuntu (universe) or OpenBSD (ports) reposi-
tories.

Please consider joining the Algol 68 user group at LinkedIn:
https://www.linkedin.com/groups/2333923

Marcel van der Veer is author and maintainer of Algol 68 Genie. Algol 68 Genie imple-
ments almost all of Algol 68, and extends that language. To run the programs described
in this publication you will need a computer with Linux or a compatible operating system.
Chapter 9 describes how you can install Algol 68 Genie on your system, and how you can
use it. Algol 68 Genie is open source software distributed under GNU GPL. This software
is distributed in the hope that it will be useful, but without any warranty. Consult the
GNU General Public License! for details. A copy of the license is in this publication.

Algol 68 Genie version 1 was an interpreter. It constructed a syntax tree for an Algol 68
program and the interpreter executed this syntax tree. As of version 2 and on Linux or com-
patible? operating systems, Algol 68 Genie can run in optimising mode, in which it employs
a unit compiler that emits C code for many units involving operations on primitive modes
INT, REAL,BOOL,CHAR and BITS and simple structures thereof such as COMPLEX. Execution
time of such units by interpretation is dominated by interpreter overhead, which makes
compilation of these units worthwhile. Generated C code is compiled and dynamically
linked before it is executed by Algol 68 Genie. Technically, the compiler synthesizes per
selected unit efficient routines compounding elemental interpreter routines needed to exe-
cute terminals in the syntax tree; compounding allows for instance common sub-expression
elimination. Generated C code is compatible with the virtual stack-heap machine imple-
mented by the interpreter proper, hence generated code has full access to a68g’s runtime
library and the interpreter’s debugger. Many runtime checks are disabled in optimising

ISee https://www.gnu.org/licenses/gpl.html.
2Compatible means here that the operating system must have a mechanism for dynamic linking
that works the same as on Linux.
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mode for the sake of efficiency. Therefore, it is recommended to only specify optimisation
for programs that work correctly. Due to overhead, optimisation is not efficient for pro-
grams with short execution times, or run-once programs typical for programming course
exercises.

Conventions in this publication

Algol 68 source code is typeset in fixed-space font like this:
#

Takeuchi’s Tarai (or Tak) function. Moore proved its termination.
See mathworld.wolfram.com/TAKFunction.html
#

PROC tak = (INT i, 9, k) INT:
IF 1 <= j
THEN 3
ELSE tak (tak (1 - 1, 3, k), tak (3 - 1, k, i), tak (k - 1, i, 73J))
FI;

Sometimes code is substituted with . .. when it would not be relevant to the explanation
at hand, as in for instance:

PROC tak = (INT i, j, k) INT:

In this publication, a68g output is typeset as:

$ a68g hello.a68
Hello, world!

Throughout the text you will find references to other sections; for instance {1.1} refers to
section 1.1 and {A} refers to appendix A. This publication contains references that are listed
in the Bibliography. A format as [Mailloux 1978] means the entry referring to work of Mail-
loux, published in the year 1978. An indication AB39. 3.1 means ALGOL BULLETIN, volume
39, article 3.1. The ALGOL BULLETIN is still available on the internet. On various places in
Parts I through III you will see references to the Revised Report in Part IV formatted as for
example {2519.1.1.A} referring you to chapter 25, section 1.1(.1), mark A, where the chap-
ter number refers to Part IV, while its suffix refers to the chapter number in the original
Revised Report.
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Organisation of this publication

Part I. Informal introduction to Algol 68

* Chapter 1 Preliminaries gives a brief history of Algol 68 and introduces a notation
for production rules.

¢ Chapter 2 Basic concepts introduces standard modes representing plain values (inte-
gers, reals, booleans and characters), as well as variables. This chapter also explains
formulas involving operands of standard modes.

¢ Chapter 3 Stowed and united modes describes ordered sets of values like rows and
structures, and also united modes. It explains how to extract sub rows from a row,
how to select a diagonal in a matrix, et cetera. This chapter also shows how to group
objects into structures. STRING and COMPLEX are introduced.

e Chapter 4 Program structure describes conditional and case constructs that let you
control program flow depending on the value of boolean or integer conditions. It also
describes loops.

* Chapter 5 Procedures and operators explains how to declare procedures and opera-
tors. This chapter brings together recursion and data structures and is a demonstra-
tion of Algol 68’s expressive power. This chapter also describes partial parametrisa-
tion. a68gis one of the few Algol 68 implementations to implement partial parametri-
sation.

¢ Chapter 6 Modes, contexts and coercions explains which modes are well-formed, and
which modes are equivalent. This chapter also summarises the "strengths" that dif-
ferent syntactic positions have and the mode coercions allowed in each one.

* Chapter 7 Transput is about transput which is an Algol 68 term for input-output.
Formatted transput is described in this chapter.

* Chapter 8 Context-free grammar provides a reference for context-free Algol 68 Genie
syntax. This in contrast to the Revised Report, which describes a context-sensitive
syntax for Algol 68.

Part II. Programming with Algol 68 Genie

¢ Chapter 9 Installing and using Algol 68 Genie describes the Algol 68 Genie (a68g),
how to install it on your computer system and how to use the program.

* Chapter 10 Standard prelude and library prelude is an extensive description of the
standard prelude and library prelude. Standard Algol 68 predefines a plethora of
operators and procedures. Algol 68 Genie predefines many operators and procedures
in addition to those required by the standard prelude, that form the library prelude.
This chapter documents these extensions.

XV
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Part II1. Example programs

* Chapter 11 Example programs lists a number of a68g programs to demonstrate the
material covered in this publication.

Part IV. Revised report on Algol 68

* Chapters 12—27 constitute a KTEX translation of the revised report on Algol 68. This
report ranks among the difficult publications in computer science.

Part V. Appendices

¢ Appendix A Bibliography has references and suggestions for further reading.

* Appendix B Reporting bugs gives information on how and where to report bugs in
Algol 68 Genie or in this publication.

* Appendix C GNU General Public License is a copy of a68g’s license.

¢ Appendix D GNU Free Documentation License is a copy of the license for parts I, II
and IV of this publication.
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Preliminaries

{Languages take such a time, and so do
all the things one wants to know about.
The Lost Road. John Tolkien. }

1.1 A brief history of programming languages

As to better understand the position of Algol 68 among today’s plethora of programming
languages, we should consider the development of modern programming languages.

In the period 1950-1960 a number of programming languages evolved, the descendants of
which are still widely used. The most notable are Fortran by Backus et al., Lisp by Mc-
Carthy et al., Cobol by Hopper et al. and Algol 60 by a committee of European and Ameri-
can academics including Backus. Algol 60 was particularly influential in the design of later
languages since it introduced nested block structure, lexical scope, and a syntax in Backus-
Naur form (BNF). Nearly all subsequent programming languages have used a variant of
BNF to describe context-free syntax.

At the time of the development of Algol 68, programming languages were required to serve
two purposes. They should provide concepts and statements allowing a precise formal de-
scription of computing processes and facilitate communication between programmers, and
they should provide a tool to solve small to medium-sized problems without specialist help.
The context of Algol 68’s development is perhaps adequately illustrated by a quote! from
Edsger Dijkstra: The intrinsic difficulty of the programming task has never been refuted
... T vividly remember from the late 60’s the tendency to blame the programming languages
in use and to believe in all naivety that, once the proper way of communicating with the
machines had been found, all programming ills would have been cured.

The early procedural languages served above purposes required for them. However, the
evolving need to build complex interactive systems asked for decomposition of a problem
into "natural" components, resulting in object oriented programming languages starting

ITranscript from keynote delivered at the ACM 1984 South Central Regional Conference.
Source: E. W. Dijkstra Archive - the manuscripts of Edsger W. Dijkstra;
https://www.cs.utexas.edu/users/EWD/.
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as early as the 1960’s. The object oriented and procedural paradigms each have strengths
and weaknesses and it is not always clear which paradigm is best suited to certain tasks,
even large ones. In numerical and scientific computing for instance, the benefit of object
oriented languages over procedural languages is controversial since in number crunching,
efficiency is a top priority.

The period 1960 to 1980 produced most of the major language paradigms now in use. Al-
gol 68 was conceived as a successor to Algol 60. Its syntax and semantics became even
more orthogonal and were defined by a Van Wijngaarden grammar, a formalism designed
specifically for this purpose. Simula by Nygaard and Dahl was a superset of Algol 60 sup-
porting object oriented programming, while Smalltalk by Kay, Ingalls and Kaehler, was a
newly designed object oriented language. C, the Unix system programming language, was
developed by Ritchie and Thompson at Bell Laboratories between 1969 and 1973. Prolog
by Colmerauer, Roussel, and Kowalski was the first logic programming language. ML by
Milner built a polymorphic type system on top of Lisp, pioneering statically typed func-
tional programming languages. Each of these languages spawned a family of descendants,
and most modern languages count at least one of them in their ancestry. Other important
languages that were developed in this period include Pascal, Forth, Scheme and SQL.

The decade 1980-1990 saw consolidation of imperative languages. Rather than introducing
new paradigms, ideas from the 1970’s were elaborated. C++ combined object oriented pro-
gramming and system programming. The United States government standardised Ada as
a system programming language for defense contractors. Mainly in Japan major efforts
were spent investigating so-called fifth-generation programming languages that incorpo-
rated logic programming constructs. The functional languages community standardised
ML and Lisp. Research in Miranda, a functional language with lazy evaluation, began to
take hold in this decade. An important trend in 1980’s language design was increased focus
on programming large-scale systems through the use of modules, reflected in the develop-
ment of Modula, Ada and ML. Although major new paradigms for imperative languages did
not appear, many researchers elaborated on existing ideas, for example object oriented pro-
gramming, and adapting them to new contexts, for example to distributed systems. Some
other notable languages from the 1980’s are Objective C and Perl.

During the 1990’s recombination and maturation of existing ideas continued. An impor-
tant motivation in this period was productivity. Many rapid application development (RAD)
languages emerged, which usually were descendants of older, typically object oriented, lan-
guages that were equipped with an IDE and garbage collection. These languages included
Object Pascal, Visual Basic, and Java. Java in particular received much attention. More
radical and innovative were new scripting languages. These did not directly descend from
other languages and featured new syntax and liberal incorporation of features. Many con-
sider these scripting languages as more productive than RAD languages, though others will
forward that scripting languages may make small programs simpler but large programs
are more difficult to write and maintain. Nevertheless, scripting languages came to be the
most prominent ones used in connection with the internet. Some important languages that
were developed in the 1990’s are Haskell, Python and PHP.

4
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Some current trends in programming languages are mechanisms for security and reliabil-
ity verification, alternative mechanisms for modularity, component-oriented software de-
velopment, constructs to support concurrent and distributed programming, metaprogram-
ming, and integration with databases. The 21" century has to date seen the introduction
of for example C#, Visual Basic.NET and Go.

Algol 68 can be placed in the history of programming languages more or less as in below
diagram. Note that some languages like Euler are not mentioned in this diagram. Some
claim that Ada is Algol 68’s successor but many dispute that. Therefore Ada is mentioned
in above diagram, but there is no line drawn from Algol 68 to Ada. An overview of the
development of Algol, and implementations, can be found at Paul McJones’s page {A}.

1958 Algol 58
|
1960 Algol 60
w

1962 Simula
1963 Algol 60

(Revised)
1967 Simula 67
1968 Algol 68 Algol W

|

1970 Pascal
1976 Algol 68 C

(Revised)
1983 Ada
1984 Ctt

1.2 A brief history of Algol 68

Algol, ALGOrithmic Language, is a family of imperative computer programming languages
which greatly influenced many other languages and became the de facto way algorithms
were described in textbooks and academic works for almost three decades. The two speci-
fications relevant to this publication are Algol 60, revised in 1963, and Algol 68, revised in
1976. Algol 58, originally known as IAL (International Algebraic Language), was an early
member of the Algol family soon superseded by Algol 60. Algol 58 introduced a compound
statement which was restricted to flow of control only and did not relate to lexical scope as
do Algol 60’s blocks.
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Ideally, a programming language supports systematic expression of algorithms by offering
appropriate control structures and data structures, and a precise, consistent formal defi-
nition to avoid surprises and portability issues resulting from obscure details that are left
to the discretion of an implementation; for example the number of implementation-defined
features in the C standard is notorious. Members of the Algol family (Algol 60 and Algol 68,
Simula, Pascal and also Ada, et cetera) are considered reasonable approximations of such
"ideal" languages, although all of them have strong points as well as disadvantages. Al-
gol 68 offers appropriate means of abstraction and exemplary control structures that leads
to a good understanding of programming. Its orthogonality results in an economic use of
language constructs making it a beautiful means to write algorithms.

The design of Algol was firmly rooted in the computing community, a contemporary term
for the small but growing international community of computer professionals and scien-
tists. It formed an international platform for discussing programming languages, compiler
construction, program construction, et cetera, and thus Algol had an important part in
erecting computer science as an academic discipline in its own right. Algol 60 was designed
by and for numerical mathematicians; in its day it was the Lingua Franca of computer
science. The language introduced block structure with lexical scope and a concise BNF def-
inition that were appreciated by people with a background in mathematics, but it lacked
compilers and industrial support which gave the advantage to languages as Fortran and
Cobol. To promote Algol, its application range had to be extended. IFIP? Working Group 2.1
Algorithmic Languages and Calculi (WG 2.1), that to this day has continuing responsibility
for Algol 60 and Algol 68, assumed the task of developing a successor to Algol 60.

In the early 1960’s WG 2.1 discussed this successor and in 1965 descriptions of a language
Algol X based on these discussions were invited. This resulted in various language pro-
posals by Wirth, Seegmiiller and Van Wijngaarden?® and other significant contributions by
Hoare and Naur. Van Wijngaarden’s paper Orthogonal design and description of a formal
language* featured a new technique for language design and definition and formed the
basis for what would develop into Algol 68. Many features found in Algol 68 were first
proposed in ALGOL BULLETIN by the original authors of Algol 60 like Peter Naur, by new
members of WG 2.1 like Tony Hoare and Niklaus Wirth, and by many others from the
world-wide computing community.

[Koster 1996] gives a first hand account of the events leading to Algol 68. Algol 68 has
had a large influence on the development of programming languages since it addressed
many issues; for example orthogonality, a strong type system, procedures as types, memory

2IFIP, the International Federation for Information Processing is an umbrella organisation for
national information processing organisations. It was established in 1960 under the auspices of
UNESCO.

3Adriaan van Wijngaarden (1916 - 1987) is considered by many to be the founding father of com-
puter science in the Netherlands. He was co-founder of IFIP and one of the designers of Algol 60
and later Algol 68. As leader of the Algol 68 committee, he made a profound contribution to the field
of programming language design, definition and description.

4Available from [Karl Kleine’s collection].
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management, treatment of arrays, a rigorous description of syntax, and parallel processing,
but also ideas that caused debate over the years such as context-sensitive coercions and
quite complicated input-output formatting. After various meetings WG 2.1 had not reached
unanimous consent. Algol 68 was eventually produced by members who wanted a new
milestone in language design. Other members, notably Wirth and Hoare, wanted to shorten
the development cycle by improving Algol 60, which eventually produced Algol W and later
Pascal. Yet other members wrote a brief minority report outlining their view on a new
language; many years later it was commented that no programming language developed
since would have satisfied that vision.

Where Algol 60 syntax is in BNF form, Algol 68 syntax is described by a two-level W-
grammar (W’ for Van Wijngaarden) that can define a context-sensitive grammar. Formally,
in a context-sensitive grammar the left-hand - and right-hand side of a production rule may
be surrounded by a context of terminal and nonterminal symbols. The concept of context-
sensitive grammar was introduced by Chomsky in the 1950’s to describe the syntax of natu-
ral language where a word may or may not be appropriate in a certain position, depending
on context. Analogously, Algol 68 syntax can rigorously define syntactic restrictions; for ex-
ample, demanding that applied-identifiers or operators be declared, or demanding that
modes result in finite objects that require finite coercion, et cetera. To enforce such syntac-
tic constrictions, a context-free syntax must be complemented with extra rules formulated
in natural language to reject incorrect programs. This is less elegant, but defining docu-
ments for programming languages with a context-free grammar do look less complex than
the Algol 68 (revised) report — compare the context-free Algol 68 Genie syntax in chapter 8
to the Revised Report syntax in Part IV.

Probably because of the formal character of the Revised Report, which requires study to
comprehend, the misconception got hold that Algol 68 is a complex language, while in fact
it is rather lean. [Koster 1996] states that the alleged obscurity of description is denied by
virtually anyone who has studied it. Perhaps it only made the impression of being complex
at the time of its introduction around 1970, since one may argue that the specification of
many contemporary languages, including that of modern C, is more complex than that of
Algol 68 [Henney 2018]. Algol 68 was defined in a formal document, first published in
January 1969, and later published in Acta Informatica and also printed in Sigplan Notices.
A Revised Report was issued in 1976; this publication includes a IXTgX translation. Algol 68
was the first major language for which a full formal definition was made before it was
implemented. Though known to be terse, the Revised Report does contain humour solis
sacerdotibus — to quote from [Koster 1996]: The strict and sober syntax permits itself small
puns, as well as a liberal use of portmanteau words. Transput is input or output. Stowed’ is
the word for structured or rowed. Hipping is the coercion for the hop, skip and jump. MOID
is MODE or void. All metanotions ending on ETY have an empty production. Just reading
aloud certain lines of the syntax, slightly raising the voice for capitalized words, conveys a
feeling of heroic and pagan fun (... Such lines cannot be read or written with a straight
face.

Algol 68 was designed for programmers, not for compiler writers, in a time when the field
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of compiler construction was not as advanced as it is today. Implementation efforts based
on formal methods generally failed; Algol 68’s context-sensitive grammar required some
invention to parse®; consider for instance x (y, z) that can be either a call or a slice
depending on the mode of x, while x does not need to be declared before being applied.
At the time of Algol 68’s presentation compilers usually were made available on main-
frames by computing centres, which may explain why Algol 68 was popular in locations
rather than areas, for instance Amsterdam, Berlin or Cambridge. It appears that Algol 68
was relatively popular in the United Kingdom, where the ALGOL68R , ALGOL68RS and
ALGOL68C compilers were developed. Hence Algol 68 compilers were few and initiatives to
commercialise them were relatively unsuccessful; for instance the FLACC compiler sold just
twenty-two copies®. In the end industry did not pick it up — the market for new universal
programming languages evidently did not develop as hoped for during the decade in which
the language was developed and implemented. Algol 68 was not widely used, though the
influence it had on the development of computer science is noticeable to this day. Interest-
ingly, two other members of the Algol family, Pascal and Ada, still have their niches but
also did not spread as widely as some may have hoped.

1.3 Notation of syntax

In Part I, a method to describe Algol 68 Genie syntax is used that closely follows the nota-
tion in Part IV, the Algol 68 Revised Report {15:.3.2.2}. However, the syntax rules in Part I
are context-free rules, while the Revised Report describes a context-sensitive W-grammar.
In the Revised Report, production rules are derived from hyper-rules and metaproduction
rules by substitution of notions (generally, bold upper-case words). This substitution mech-
anism is adopted in Part I to introduce a context-free grammar and will be explained in
this section. We will forego the difference between hyper-rules, metaproduction rules and
production rules since Part I does not introduce a context-sensitive grammar. Following
conventions from the Revised Report are adopted:

(i) A syntactic notion is a bold word, with optional hyphens or blank space, for example
integral-denotation. A notion that is to be substituted, generally is a bold upper-
case word, for instance UNITED. To improve legibility syntactic notions are provided
with hyphens, however in production rules they are mostly provided with blanks. Ty-
pographical display features, such as blank space, hyphen, and change to a new line
or new page, are of no significance (but see 244.4.d). For instance, integral denota-
tion means the same as integral-denotation or integraldenotation.

(i1) To write a plural form of a syntactic notion, the letter s is appended to its singular
form, for instance identifiers. Also, the initial letter of a lower-case syntactic notion

5Algol 68 Genie employs a multi-pass scheme to parse Algol 68 [Lindsey 1993] {9.9}.
6Source: Chris Thomson, formerly with Chion Corporation, on comp.lang.misc [1988].
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may be capitalised, for instance Formulas that would follow the production rule for
formula.

(iii) Within a production rule, a reference as for example identifier {8.6.2} means that
the notion identifier is defined in section 8.6.2.

(iv) A rule for a syntactic notion consists of the following items, in order:

* an optional asterisk ;
{If a notion is preceded by an optional asterisk, the notion is not used in other
rules and is used as an abstraction for its alternatives, for example:
*operand: monadic operand; dyadic operand.}

* a non-empty bold notion N ;
* a colon-symbol ;

* a non-empty sequence of alternatives for N separated by semicolon-symbols;
within an alternative, a comma-symbol means "is followed by".

* a point-symbol.

General production rules in Part I (but hyper-rules or metaproduction rules in the Revised
Report), are:

e EMPTY:.
This is the empty production.
¢ NOTION list: NOTION; NOTION, comma {8.2} symbol, NOTION list.

* NOTION list proper: NOTION, comma {8.2} symbol, NOTION list.
A list-proper contains at least two NOTIONSs.

* NOTION option: NOTION; EMPTY.

¢ NOTION sequence: NOTION; NOTION, NOTION sequence.

¢ NOTION series: NOTION; NOTION, semicolon {8.2} symbol, NOTION series.
For example, with above rules we can define parameter-list-option by substituting NO-
TION for parameter-list and parameter respectively to obtain:

¢ parameter list option: parameter list; EMPTY.

¢ parameter list: parameter; parameter, comma {8.2} symbol, parameter-list.
From this we see that a parameter-list-option is possibly empty, or possibly contains one
parameter or multiple parameters separated by comma-symbols. Typically, in C and

Pascal documentation, graphic syntax-diagrams are used to describe syntactic constructs;
for instance a parameter-list would be depicted as:
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parameter ——

Another example for a production rule is MARKER frame:

* MARKER frame:
insertion option, replicator option, letter s {8.4} option, MARKER;

Viewing MARKER as a parameter, we can for instance deduce the production rule for a
letter-z-frame by substituting MARKER for z-frame:

¢ letter z frame:
insertion option, replicator option, letter s {8.4} option, letter z;

More common production rules encountered in Part I are:

¢ length: long {8.2} symbol sequence; short {8.2} symbol sequence.
¢ qualifier: heap {8.2} symbol; new {8.2} symbol; loc {8.2} symbol.

¢ sign: plus {8.2} symbol, minus {8.2} symbol.

¢ *conditional clause: choice using boolean clause {8.9.1}.

¢ *case clause: choice using integral clause {8.9.1}.

¢ *conformity clause: choice using UNITED {15,.5} clause {8.9.1}.

As indicated earlier, in a context-sensitive grammar, the left-hand - and right-hand side
of a production rule may be surrounded by a context of terminal and nonterminal sym-
bols. This can be clearly recognised in the Revised Report. The Revised Report employs
hyper-rules and metaproduction rules to construct context-sensitive grammars. For in-
stance, unique declaration of all applied tags in a program (identifiers, operators, and so
forth) is ensured via LAYER, PROP and related rules, while well-formed modes are con-
structed via SAFE and related rules. One way to view the matter is as follows: substituting
hyper-rules and metaproduction rules to obtain production rules (which is the machinery
of a two-level grammar) is an ingenious technique to generate a tailored context-sensitive
grammar needed to parse a particular Algol 68 program. Since every correct particular
Algol 68 program has its specific grammar to parse it, a universal Algol 68 grammar, be-
ing the set of all grammars for every possible correct Algol 68 program, would be infinite.
With this in mind, Part IV of this publication is easier to comprehend. In Part I, being an
informal introduction, a context-free grammar is presented and syntactic restrictions are
written in natural language.

10



Basic concepts

{Lisp and Algol, are built around a kernel that
seems as natural as a branch of mathematics.
Metamagical Themas.  Douglas Hofstadter. }

2.1 Displays

We start this informal introduction with a feature that contributes to the elegance of Al-
gol 68 programs. It is important to understand that in Algol 68, every construct except for a
declaration yields a value. Imagine a desk calculator where the result of the last operation
is visible in the display. Algol 68 works in a similar way - there is a "display" by which the
result of the last operation is made visible to the surrounding statements'. With this in
mind, and if you have programmed before, you may understand next small program that
reads whole numbers from the keyboard and echoes the factorial of each number to the
screen:

OP FAC = (INT k) INT: # A new monadic operator yielding k!#
IF k =0
THEN 1
ELSE k * FAC (k - 1)
FI;

WHILE INT n = read int; n >= 0
DO print ((n, "! =", FAC n))
oD

In above example, the THEN and ELSE branches yield the result of their respective state-
ments; in this case those values are yielded as the result of tail-recursive operator FAC. Also
note the double-parenthesised call of print; the inner parenthesis form a row-display,
which is a denotation for a row, in this case a row of printable values.

In technical terms, the display is the top of the evaluation stack.

11
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2.2 Modes and values

Two basic concepts in Algol 68 are mode and value. In other programming languages a
mode is for instance called a type. At the time of development of Algol 68, two notable
scientific-engineering programming languages in use were Fortran and Algol 60. At the
time Fortran 66 let a programmer manipulate values of type INTEGER, REAL, COMPLEX
and LOGICAL, and rows thereof. Algol 60 just offered the types INTEGER, REAL, BOOLEAN
and rows thereof. On the other hand Lisp offered lists, a data structure at the time not yet
supported by the former two languages, for example.

Algol 68 brought this to a next level by introducing next to basic modes INT , REAL , BOOL
and CHAR (with obvious meaning) a mechanism to define other modes by compounding
other modes into rows, structures, unions, and pointers. Moreover Algol 68 offers a method
to define new operators that operate on values of plain or compounded modes. These fea-
tures are common now in many programming languages, but around 1970 those were an
innovation.

Values can be compounded to form text strings, complex numbers, rows and matrices
etcetera. Text, which is a row of characters, is so common that this is the only compounded
mode with a denotation, for instance "denotation™. Algol 68 provides the collateral-
clause to write values for other compounded modes. In chapter 3 this is described in detail;
in brief, a collateral-clause is a parenthesised comma-separated list written as either

(..o0)
or
BEGIN ... END.

For example, the value of a complex number might be written as (0.5, -0.5) which

represents the value § — L.

A typical use of a collateral-clause comes with procedure print that takes as single
argument a row of a union of all printable modes. This causes the Algol 68 idiosyncrasy that
input-output statements working on multiple objects have double-parenthesised calls?, for
example

print (("Step ", n, " yields ", z, new line))

When printing a single object, the collateral-clause is not needed because Algol 68 will
cast a value to a row where context both allows and requires it (see sections 6.5 and 6.4),
So one can write

print (new line)

Algol 68 transput is described in chapter 7.

2Except in ALGOL68C that deviated from the input-ouput specification in this respect.

12
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There must of course also be a way to write a ’constant’ value for a mode, which in Algol 68
terminology is a denotation. Like any other language, Algol 68 has common denotations
for all basic modes.

The symbols INT, REAL, BOOL and CHAR are examples of mode-indicants in Algol 68.
A mode-indicant might be called a type identifier in other programming languages. A
mode-indicant is a declarer that specifies a mode. Mode-indicants are written in capi-
tal letters and can be as long as you like though no intervening spaces are allowed; however
a68g allows intervening underscores to be part of a mode-indicant.

In Algol 68 vOID indicates the absence of a value so has different status than a mode®
though there is a single denotation: EMPTY.

2.3 Whole numbers

In Algol 68 whole numbers (integers) have mode INT and are elements of Z, but not the
other way round: not all elements of Z are integers since a computer is a finite object. The
identifier max int from the standard-prelude {10.4} represents the largest representable
integer on the platform on which a program runs:

$ a68g —-p maxint
+9223372036854775807

or

$ a68g -p ’'long max int’
+170141183460469231731687303715884105727

Note that within an identifier white space has no meaning so max int is the same iden-
tifier as maxint. Compare max int to the pre-defined constant INT_MAX in C. Sometimes
one needs to work with integral values larger than max int. To that end Algol 68 Genie
supports modes LONG INT and LONG LONG INT.In a68g, the range of LONG LONG INT is
default circa twice the length of LONG INT but can be made arbitrarily large through the
option --precision {9.6.4}. The respective maximum values for the three integer lengths
available in a68g depend on the platform on which the program was built.

3In the Revised Report, "MOID" is "MODE or void".
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On platforms as for example 1386 or amd64 with a recent version of gcc:

Identifier Value Remarks
max int 203 1

long max int 2127 _q

long long max int 100 — 1 a68qg library

On other platforms:

Identifier Value Remarks
max int 231 1

long max int 10%° — 1 a68g library
long long max int 100 —1 a68qg library

As in any programming language, one writes the denotation for an integer in Algol 68 as a
sequence of digits 0 to 9. Note that in Algol 68 an integral-denotation is unsigned; it is in
W, not in Z. A sign is a monadic-operator, so if one writes —1 or +1 you will have written
a formula, {2.6}. In standard Algol 68, a denotation for LONG INT must be preceded by
the reserved word LONG and a denotation for LONG LONG INT must be preceded by the
reserved words LONG LONG. The production rule for an integral-denotation is:

* integral denotation:
length {1.3} option, digit {8.3} sequence.

For instance:

a) 6048000 « 6 048 000
b) LONG 266716800000 - LONG 266 716 800 000
¢) LONG LONG

3930061525912861057173624287137506221892737197425280369698987

with value (c) being 3'27. Note that white space has no meaning in an integral-denotation.
a68g relaxes the use of LONG prefixes when the context imposes a mode for a denotation,
in which case a denotation of a lesser precision is automatically promoted to a denota-
tion of the imposed mode.

14
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2.4 Identifiers and identity declarations

Suppose one wants to use the value 8 in various parts of a program, then a symbolic ref-
erence to this value is practical. Algol 68 provides an identity-declaration that binds
an identifier to a constant value. Similar constructions in other languages are CONST
declarations in Pascal, PARAMETER statements in Fortran, or #define directives in the C
preprocessor. The identity-declaration for the above mentioned integer would be:

INT measurements done = 8

In Algol 68, white space is only required when concatenating terms introduces ambiguity,
so you could write:

INTmeasurementsdone=8
but it is of course common practice to add white space to improve clarity*.

An identity-declaration is defined as:

¢ identity declaration:
formal declarer {8.11}, identity definition list.

¢ identity definition:
identifier {8.6.2}, equals {8.2} symbol, strong unit {8.9.5}.

A mode-indicant can be used as a formal-declarer. The formal-declarer cannot be
vOID . The difference between a formal-declarer and an actual-declarer will be ex-
plained in chapter 3. An identifier is a sequence of one or more characters which starts
with a lower-case letter and continues with lower-case letters or digits:

¢ identifier:
letter {8.4};
identifier, letter {8.4};
identifier, digit {8.3};
identifier, underscore {8.2} symbol sequence, identifier.

An identifier can be interrupted by spaces or tab characters, but those are ignored. Hence
maxint is the same identifier as max int. a68g allows underscores in identifiers, but
an underscore is part of the identifier unlike white space. Examples of valid identifiers
are:

i « rate 2 pay -« eigen value 3

The following are not identifiers:

4Also in other languages, like Fortran, white space has no meaning. Even so, programmers add
white space to improve legibility, hardly anyone leaves it all out.
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a) 3d vector
b) particle-energy

¢) rootSymbolPointer

Example (a) starts with a digit, (b) contains a character which is neither a letter nor a digit,
and (c) contains capital letters. An identifier looks like a name in the sense of that word,
but we do not use the term "name" because in Algol 68 the term "name" signifies a value
refering to another one, such as a "variable".

The right hand side of the equals-symbol in an identity-declaration is a unit yielding
a value. The unit can be any piece of program text which yields a value of the mode spec-
ified by the mode-indicant. A denotation is an example of a unit. Other units yielding
integers are the routines® read int , read long int and read long long int that
yield an integral value read from standard input; if you did not redirect input, this would
be your keyboard. Since an identity-declaration is a not a unit and cannot yield a value,
one cannot write:

INT i = INT j = 1
Instead one must write:
INT i = 1; INT j = i

There are two ways of declaring multiple identifiers. The first way is sequential declara-
tion:

INT 1 = 1; INT j = read int

The semicolon-symbol "; " is called the go-on-symbol. One can in principle contract the
above declarations as follows:

INT 1 = 1, j = read int

The comma-symbol separates the two declarations, but this does not mean that i is
declared first, followed by j. It is up to a68g to determine which declaration is elabo-
rated first; they could even be done in parallel. This is known as collateral elaboration,
as opposed to sequential elaboration determined by the go-on-symbol (the semicolon-
symbol). Therefore a risk of combining two identity-declarations as in:

INT one = 1, start = one

is that start is left undefined if one = 1 is elaborated last. When a68g executes above
declaration, it may or may not end in a runtime error since an uninitialised identifier,
in casu one before it is associated with 1, is being used.

5These identifiers come from ALGOL68C .
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Actually, in Algol 68 all declarations of objects are an identity-declaration though abbre-
viations are allowed since programs would become verbose and terse. You will see this for
instance when reading about variable-declarations and procedure-declarations.

2.5 Real numbers

The term "real number" here is a subtle misnomer since in the mathematical sense real
numbers are not countable and computers cannot represent them exactly because a com-
puter is a finite object. Hence in programming, real numbers are elements of R, but not
the other way round: not all elements of R are real numbers. The common way to treat
real numbers are either as rational numbers with separate numerator and denominator,
as fixed-point numbers which is a rational with a same denominator for all numbers, or as
a floating-point number that stores with a fixed-point number an exponent for the denom-
inator. Floating-point numbers are a compromise between range, precision and processing
time. The optimum for that compromise varies with the application.

As in many programming languages, in Algol 68 real numbers are floating point numbers.
The smallest REAL which a68g can handle is declared in the standard prelude as identi-
fier min real . The largest REAL which a68g can handle is declared as identifier max
real in the standard prelude. Compare these identifiers to their equivalents DBL_MIN
and DBI_MAX in C. Also, there is an identifier small real that gives the smallest value
that when added to 1.0, yields a value larger than 1.0, and thus is a measure of precision.
As with integers, sometimes one needs to use real values with higher precision than offered
by REAL. Algol 68 Genie supports modes LONG REAL and LONG LONG REAL. In a68g the
precision of LONG LONG REAL is default circa twice that of LONG REAL but can be made
arbitrarily large through the option --precision {9.6.4}. Below are the respective limiting
values for the three real lengths available in a68g, which were chosen under the observa-
tion that most multi-precision applications require 20-60 significant digits.
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On platforms as for example 1386 or amd64 with a recent version of gcc:

Identifier Value Remarks
max real 1.7976931 ... x 10308

long max real 1.1897314 ... x 104932

long long max real 1 x 10999999 a68g library
min real 2.2250738 ... x 107308

long min real 3.3621031 ... x 1074932

long long min real 1 x 107999999 a68g library
small real 2.2204460 ... x 10716

long small real 1.9259299 ... x 10734

long long small real 1x10793 a68g library

On other platforms, LONG REAL is implemented in software:

Identifier Value Remarks
max real 1.7976931 ... x 10308
long max real 1 x 10999999
long long max real 1 x 10999999

a68g library
a68g library

min real 2.2250738... x 107308
long min real 1 x 107999999 a68g library
long long min real 1 x 107999999 a68g library
small real 2.2204460 - - - x 10716
long small real 1x10728 a68g library
long long small real 1x10793 a68g library

A real-denotation consists of digits followed by at least either a fractional part point-
symbol, digit-sequence or an exponent-part. The production rules for a real-denotation
read:

* real denotation:
length {1.3} option, digit {8.3} sequence, exponent part;
length {1.3} option, digit {8.3} sequence option, point {8.2} symbol,
digit {8.3} sequence, exponent part option.

* exponent part:
letter e {8.4} symbol, sign option, digit {8.3} sequence.

Asis common, e is the times ten to the power {8.2} symbol; for example 9e-9 means 9x 1077,
Real-denotations are unsigned, as are integral-denotations, but the exponent can be
preceded by a sign®. In standard Algol 68, a denotation for LONG REAL must be preceded

60ne of the minor difficulties with Algol 68 is that in INT i = -9, the - means the monadic-
operator, which could have been user-defined, whereas in REAL x = le-9, the - is the mathe-
matical minus-sign, even if the monadic-operator - has been re-defined.
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by the reserved word LONG and a denotation for LONG LONG REAL must be preceded by
the reserved words LONG LONG. Example real-denotations are:

a) .5 « 0.5 « 5.0e-1 =« 5e-1
b) LONG 2.718281828459045235360287471

¢) LONG LONG
0.707106781186547524400844362104849039284835937688474036588339869

with value (b) representing e and value (c) representing %\/5 . As with integral-denotations,
a68g relaxes the use of LONG prefixes when the context imposes a mode for a denotation,
in which case a denotation of a lesser precision is automatically promoted to a denota-
tion of the imposed mode.

Example identity-declarations for values of mode REAL are:

REAL e = 2.718 281 828,
electron charge = 1.6021e-19 # C #,
cost per unit = 25.00 # Euro #

Since a68g admits the indicant DOUBLE for LONG REAL, you could also write:
DOUBLE pi times 2 = 2 * long pi
The value of 7 is declared in the a68g standard prelude as the identifier pi with three

precisions:

® REAL pi = 3.14159265358979
¢ LONG REAL long pi = 3.1415926535897932384626433832795

¢ LONG LONG REAL long long pi =
3.14159265358979323846264338327950288419716939937510582097494459

The length of LONG 1LONG modes can be made arbitrarily large through the option --precision
{9.6.4}. So one can easily print a hundred digits of = through:

$ a68g -p "long long pi" —--precision=100
+3.141592653589793238462643383279502884197169399375105820974944592307816406
28620899862803482534211706798214808651328231e +0

or Euler’s number e, analoguously:

$ a68g -p "long long exp(l)" —--precision=100
+2.718281828459045235360287471352662497757247093699959574966967627724076630
35354759457138217852516642742746639193200306e +0

19



LEARNING ALGOL 68 GENIE

It was mentioned above that in an identity-declaration, the unit must yield a value
of the mode required by the declarer. Now consider this example identity-declaration
where the unit yields a value of mode INT:

REAL z = read int

However, the mode required by the declarer is REAL. Depending on the context, in Al-
gol 68 a value can change mode through a small set of implicit coercions. There are five
contexts in Algol 68: strong, firm, meek, weak and soft. The right-hand side of an identity-
declaration is a strong context. In a strong context, the mode of a unit is always imposed
(in this case by the formal-declarer on the left-hand side). One of the strong coercions is
widening that can for instance widen a value of mode INT to a value of mode REAL.

The procedure print will print a real argument, per default to standard output, as in:
print (pi) + print (LONG 1.732050807568877293527446342)

a68gimplements the routines read real,read long real and read long long real
that yield a real value read from standard input, so you may write:

REAL z = read real;

On a right-hand side of an identity-declaration, the strong context forces the routine
read real to yield a real value by a coercion called deproceduring 6.5.1.

2.6 Formulas

Formulas, often called expressions in other programming languages, consist of operators
working on operands. Operators are encapsulated algorithms that compute a value from
their operands. In chapter 5, we will look at operators in more detail, as well as how
to define new ones. Algol 68 provides a rich set of pre-defined operators in the standard
prelude, described in chapter 10, and one can define more as needed. This chapter describes
the operators in the standard-prelude which can take operands of mode INT, REAL,
BOOL or CHAR. The syntax for a formula reads:

¢ formula:
monadic operator {8.6.3} sequence, monadic operand;
dyadic operand, dyadic operator {8.6.3}, dyadic operand.

* monadic operand:
secondary {8.9.3};

* dyadic operand:
monadic operator {8.6.3} sequence option, monadic operand;
formula.

20



INFORMAL INTRODUCTION TO ALGOL 68

¢ *operand: monadic operand; dyadic operand.

Secondaries {8.9.3} are operands in formulas. Operators come in two forms: monadic-
operators that take one operand and dyadic-operators that take two operands. Operator-
symbols are written as a combination of one or more special symbols, or in upper-case let-
ters like a mode-indicant. A formula can be the unit of an identity-declaration. Thus
the following identity-declarations are both valid:

REAL x = read real + 1.0; REAL y = ABS sin (2 * pi *x x)

White space is not significant in a formula as long as it has a unique meaning. However,
an operator cannot contain white space, in contrast to an identifier. The reason for this is
that in Algol 68, adjacent identifiers have no meaning but adjacent operators do.

A monadic-operator has only one operand, while a dyadic-operator has two oper-
ands. A monadic-operator precedes its operand. For example, the monadic minus -
reverses the sign of its operand: —k. There is, likewise, a monadic + operator which re-
turns its operand: +k. Hence monadic-operators - or + take an operand of mode INT
and yield a value of mode INT. They can also take an operand of mode REAL in which case
they will yield a value of mode REAL. The operator ABS takes an operand of mode INT
and yields the absolute value of mode INT. For example, ABS -1 yields 1. In the standard
prelude is another definition of ABS that takes an operand of mode REAL yielding a value
of mode REAL. When monadic-operators are combined, they are of course elaborated in
right-to-left order. That is, in ABS -1, — acts on 1 to yield —1, and then ABS acts on —1 to
yield 1. Another monadic-operator which takes an INT or REAL operand is STGN which
yields —1 if the operand is negative, 0 if it is zero, and +1 if it is positive. For modes that
have multiple precisions, Algol 68 defines the monadic-operator L.ENG that will increase
precision by one LONG, and the monadic-operator SHORTEN that will decrease precision
by one LONG, for the operand value. Note that a runtime error may result in case the value
of a longer precision cannot be represented in a shorter precision, though REAL values will
be rounded.

It was mentioned that in a strong context, a value of mode INT can be coerced by widen-
ing to a value of mode REAL. But how do we convert a value of mode REAL to a value of
mode INT? In Algol 68 this is impossible by implicit coercion. The reason behind this de-
sign choice in Algol 68 is that the fractional part cannot be implicitly discarded. You must
explicitly state how the conversion should take place. Algol 68 offers monadic operators
to convert a value of mode REAL to a value of mode INT. If one wants to convert a REAL
value to an INT, one must use the operator ROUND or ENTIER . The operator ROUND takes
a single operand of mode REAL and yields an INT whose value is the operand rounded
to the nearest integer. Thus ROUND 2.7 yields 3, and ROUND 2.2 yields 2. The same rule
applies with negative numbers, thus ROUND -3.6 yields —4. Essentially, one gets an inte-
ger result that differs not more than 0.5 from the real value. The operator ENTIER takes a
REAL operand and likewise yields an INT result, but the yield is the largest integer that
is not larger than the real operand. Thus ENTIER 2.2 yields 2, ENTIER -2.2 yields —3.
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A basic dyadic-operator is addition, +; for instance:
print (read int + 1)

The plus operator + takes two operands of mode INT and yields a sum of mode INT. It is
also defined for two operands of mode REAL yielding a sum of mode REAL :

REAL x = read real + offset

As mentioned, the maximum integer which a68g can represent is max int and the maxi-
mum real is max real. Addition could give a sum which exceeds those two values, which
is called overflow. Algol 68 leaves such case undefined, meaning that an implementation
can choose what to do. a68g will give a runtime error in case of arithmetic overflow, for
example:

1 (print (((1 + max int)

1
a68g: runtime error: 1: INT math error (numerical result out of
range) (detected in [] "SIMPLOUT" closed-clause starting at " ("
in this line).

The dyadic minus operator for subtraction - also takes two operands of mode INT or two
operands of mode REAT and will yield an INT or REAL difference respectively:
INT difference = a - b, REAL distance = end - begin

Since a formula yields a value of a particular mode, one can use it as an operand for
another operator. For example:

INT sum = a + b + c

the order of elaboration being that operands are elaborated collaterally, and then the
operators are applied from left-to-right in this particular example, since the two operators
have the same priority. The times operator * performs arithmetic multiplication and takes
INT operands yielding an INT product. For example:

INT product = 45 % 36

Likewise, » is also defined for multiplication of two values of mode REAL:

REAL pi 2 = 2.0 % pi

We already saw with + and - that a formula can be an operand in another formula:

INT factorial 6 = 2 = 3 = 4 « 5 % 6;
REAL interpolation = slope * x + intercept

In Algol 68, the common precedence of brackets over exponentiation, then division, then
multiplication, and then addition and subtraction, applies and it is implemented by giving
a priority to operators. The priority of multiplication is higher than the priority for addition
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or subtraction. The priority of the dyadic-operators + and - is 6, and the priority of
the » operator is 7. For example, the value of the formula 2 + 3 % 4 is 14. It is possible
to change the priority of standard operators, but that does not make sense — priority-
declarations are meant to define the priority of new dyadic-operators one introduces.
Every dyadic operator has a priority of between 1 and 9 inclusive, and monadic-operators
bind more tightly than any dyadic-operator. One can of course force priorities by writing
sub expressions in parentheses:

INTm=1+ (2 = 3), # 7 #, n= (1 + 2) » 3 # 9 #

The parentheses in Algol 68 are short-hand for BEGIN ... END and indeed, you could
write a clause in parentheses:

INT one ahead = 1 + (INT k; read (k); k)

Hence there is no special construct for sub expressions in parenthesis that one finds in many
other programming languages. This is a consequence of Algol 68’s famed orthogonality.
There are many examples of orthogonality throughout this publication. Parentheses can
be nested to any depth as long as a68g does not run out of stack space.

On the right-hand side of an identity-declaration, widening is allowed, so the following
declaration is valid:

REAL a = 24 * -36
The formula is elaborated first, and the final INT result is widened’ to REAL.

Algol 68 defines two operator-symbols for division of integers. The operator % takes oper-
ands of mode INT and yields a value of mode INT. It has the alternative representation
OVER . The formula 7 % 3 yields 2, and the formula -7 % 3 yields —2. The priority of %
is 7, the same as multiplication.

The modulo operator MOD yields the remainder after integer division. MOD can alternatively
be written as %+ and its priority is 7, the same as division. Algol 68 defines MOD as follows:
let ¢ € Z be the quotient of a € Z and b € Z,b # 0 and r € W the remainder, such that
a=qxb+r;r <|b then a MOD b yields r. Note that the result of MOD always is a non-
negative number. Therefore the quotient ¢ in the definition of MOD is not consistent with the
definition of OVER; for example 7 MOD 3 yields 1 (¢ = 2), but -7 MOD 3 yields 2 (¢ = —3).

Division of REAL numbers is performed by the operator / which takes two REAL operands
and yields a REAL result; it has a priority of 7. For example, the formula 3.0 / 2.0 yields
1.5. As indicated above, the operator / is also defined for INT operands; for example 3 /
2 yields 1.5. There is no REAL version of MOD.

"An operand is in a firm context. In a firm context no widening is allowed, otherwise we could
not decide whether to use integer addition or real addition when we add integer operands.
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Algol 68 defines an exponentiation operator *+ or its equivalents ~ or UP . Its priority is 8.
The mode of its left operand can be either REAL or INT but its right operand, the expo-
nent, must have mode INT. If both its operands have the mode INT, the yield will have
mode INT and in this case the right operand must not be negative; if the left operand
is real the yield will have mode REAL and the right operand can be negative. Thus the
formula 3 *~x 4 yields 81 and 3.0 *x 4 yields 81.0. Exponentiation takes priority over
division, multiplication and addition or subtraction. For example, the formula 3 » 2 x«
4 yields 48, not 1296. A common pitfall is the formula -x *+ 2 which yields 2?2 in stead
of —(2?). The monadic minus is elaborated first, followed by the exponentiation. This looks
straightforward, but even experienced programmers tend to make this mistake every now
and then. This particular example is not specific to Algol 68, for instance Fortran has the
same peculiarity.

In the discussion above the arithmetic operators +, — and » have operands of identical
modes:

ZxZ—7Z*RxR—=R

In practice, one will frequently use operands of mixed modes. The dyadic-operators +,
-, » and / (but not %) are also defined for mixed modes. That is, any combination of REAL
and INT operands can be used:

ZxR—->ReRXxZ—R

With mixed modes the yield is always REAL. Thus the following formulas are valid and
yield a value of mode REAL:

small real + 1 « 2 * pi

The priority of the mixed-mode operators is unchanged since priority relates to the operator
symbol rather than to the modes of operands or result.

2.7 Mathematical functions

Routines are the subject of chapter 5, however the routines print, read and others like
read int, read real, read bool and read char were already mentioned. Like other
languages, Algol 68 defines various mathematical functions that take real arguments and
yield a real result. A runtime error occurs if either argument or result is out of range.
Multi-precision versions for many of these routines are also pre-defined and are preceded
by either 1ong or 1ong long, for instance 1ong sqgrt or long long 1n. Algol 68 Genie
provides many more functions than standard Algol 68. A complete list of available func-
tions is in section 10.6.1 onwards.
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2.8 Boolean values

The two values of mode BOOL have denotations TRUE and FALSE . The procedure print
prints T for TRUE, and F for FALSE. Thus:

BOOL t = TRUE, f = FALSE;
print ((t, £));

produces TF on standard output. Boolean values are also read as T and F respectively. a68g
implements procedure read bool that yields a boolean value read from standard input,
SO one can write:

BOOL answer = read bool;

A common monadic-operator for a BOOL operand is NOT , with alternative representa-
tions ~ or ~ . Obviously, if the operand is TRUE, NOT yields FALSE, and if the operand is
FALSE, NOT yields TRUE. The operator ODD , a relict from a distant past, yields TRUE if the
integer operand is an odd number and FALSE if it is even. ABS converts its operand of
mode BOOL and yields an integer result: ABS TRUE yields 1 and ABS FALSE yields 0.

Dyadic-operators with boolean result come in two kinds: those that take operands of
mode BOOL, yielding TRUE or FALSE, and comparison operators {2.10} that take operands
of other modes. Three dyadic-operators are declared in a68g’s standard-prelude which
take operands of mode BOOL. The operator AND , with alternative representation &, yields
TRUE only if both its operands yield TRUE. The priority of AND is 3. The operator OR yields
TRUE if at least one of its operands yields TRUE. The priority of OR is 2. The operator XOR
yields TRUE if exactly one of its operands yields TRUE. It has no alternative representation.
The priority of XOR is 3.

2.9 Characters and text

The mode of a character is CHAR . Algol 68 Genie recognises 1 + max abs char distinct
values of mode CHAR, some of which cannot be written in denotations, for example control
characters. A character is denoted by placing it between quote characters, for instance the
denotation of lower-case ais "a". The quote character """ " is doubled in its denotation.
This convention works because adjacent denotations have no meaning in Algol 68 syntax.
These are example character-denotations:

"M" ."m" ."O" sMe M ."\" s/ PORLE LR Pl "
r

The procedure print will print a character value, and a68g implements procedure read
char that yields a char value read from standard input. Example identity-declarations
for values of mode CHAR are:
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CHAR a = "A", z = read char, tilde = "~"

The space character is declared as the identifier blank in the standard-prelude. Note
that there also is a predefined identifier space , but this is a routine that only advances
the position in a file upon input or output, without operating on the character that was at
the current position in the file.

For characters that have no denotation, the operator REPR can be used that converts an
integral value into a character value, for instance:

CHAR null = REPR 0, bell = REPR 7

Values of modes INT, REAL, BOOL and CHAR are known as plain values in Algol 68. Chapter
3 describes that plain values can be organised in rows and in this way text is represented
as a row of characters like vectors are rows of real numbers, et cetera. Texts are so common
that every programming language has a text denotation: a quoted string literal. In chap-
ter 3 you will read that in Algol 68 the row of character mode reads [] CHAR. We discuss
[] CHAR briefly here just to introduce the row-of-character-denotation so we can print
texts from our basic Algol 68 programs. The relevant production rules read:

* row of character denotation:
quote {8.2} symbol, string item sequence, quote {8.2} symbol.

* string item:
character;
quote {8.2} symbol, quote {8.2} symbol.

A row-of-character-denotation is conventionally delimited by quote characters:

"row-of-character—-denotation"

One can of course print row-of-character-denotations, so one can let a program print
descriptive texts:

print ("Oops! Too few experiments performed");

In general, a68g will concatenate a source line ending in a backslash with the next line;
this feature can be used in case a denotation must be continued on a next line:

print ("In general, a68g will concatenate \
a source line ending in a backslash with the next line;");

Algol 68 provides operators for character operands. There are two monadic-operators
which involve the mode CHAR. The operator ABS takes a CHAR operand and yields the inte-
ger corresponding to that character. For example, ABS "A" yields 65 (if your platform uses
ASCII encoding). The identifier max abs char is declared in the standard-prelude
and will give you the maximum number in your encoding. Conversely, we can convert an
integer to a character using the monadic-operator REPR ; for instance REPR 65 yields
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the value "A". REPR accepts an integer in the range 0 to max abs char. REPR is of par-
ticular value in allowing access to control characters. Dyadic-operators + and * involve
(repeated) concatenation of characters and are discussed in chapter 3.

2.10 Comparison operators

Values of modes INT, REAL, BOOL and CHAR can be compared to determine their relative
ordering. Because the widening coercion is not allowed for operands, many extra compar-
ison operators are declared in the standard-prelude that compare values of mixed modes
such as REAL and INT. For example, the boolean-formula:

3 =1.0+ 2
yields TRUE. Similarly:
1 +1=1

yields FALSE. Note that the equals-symbol = can also be written as EQ. Likewise, the
formula:

3500.0 EQ 3.5e3

should?® yields TRUE. The negation of = is /= (not equal):
3 /=2

yields TRUE, and:

TRUE /= TRUE

trivially yields FALSE. Alternative representations of /= are ~= and NE . The priority of both
= and /= is 4. The comparison operators < , >, <= and >= can be used to compare values
of modes INT, REAL and CHAR in the same way as = and /=. Alternative representations
for these operators are LT and GT for < and > and LE and GE for <= and >= respectively.
The priority of all these four comparison operators is 5. Characters are ordered by their
absolute (integer) value. Hence if identifiers a and b are declared as having mode CHAR,
then the formula:

a <b
will yield the same value as the comparison of integers:

ABS a < ABS b

8You should of course be cautious when comparing two REAL values for equality or inequality
because of subtle rounding errors and finite precision of an object of mode REAL. For instance,
1.0 + small real / 2 = 1.0 will yield TRUE.
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BOOL formulas yielding TRUE or FALSE can of course be combined. For example, to test
whether z lies between 0 and 1 one writes:

Xx > 0 AND x < 1

The priorities of <, > and AND are defined such that parentheses are unnecessary in this
case, but using parenthesis can improve legibility of code. More complicated BOOL for-
mulas can be written:

cycle < 10 AND cmd /= "s" OR read bool

Because the priority of AND is higher than the priority of OR , AND in the above formula is
elaborated first. Code clarity can always be improved using parentheses:

cycle < 10 AND (cmd /= "s" OR read bool)

2.11 Variables and assignation

Up to here we dealt with constants: denotations or values associated with an identi-
fier through an identity-declaration. Practical programs require variables, for instance
identifiers whose value can change. In Algol 68 parlance, a name is a value that refers to
(points to) another value. A name is a value which refers to a location that stores a value.
Obtaining the value from a name is called dereferencing, and changing the value at the
referenced location is called assignation.

You may be tempted to think that a name is implemented as a pointer to a memory loca-
tion, but names are handles rather than pointers. Algol 68 is a garbage-collected language,
meaning that when memory fills a procedure is started to weed out stale names and to
compact memory so new objects can be allocated again. Hence a name can change, but it
will always point to the last value that was assigned to it.

The mode of a name is called a "reference mode", with "reference" having reserved word
REF. For example, a name which refers to a value of mode REAL has mode REF REAL.
Likewise, we can create names with modes:

REF INT . REF REAL +« REF COMPLEX -« REF BOOL
REF can precede any mode, except VOID which is not a mode.

Since names are values, REF can also precede the mode of a name - a pointer variable. Thus
it is possible to construct modes such as:

REF INT . REF REF REAL . REF REF REEF COMPLEX

Although one can write an arbitrary number of REFs, in practice one will not encounter
more than four of them, which specify REF-REF-REF variables.
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Names are created in Algol 68 using generators. There are two kinds of generator: local
and global. Local generators generate space in the stack, while global generators gen-
erate space in the heap. The two differ in the dynamic lifetime of the name they generate.
We have encountered the concepts of range and reach. Those are static concepts, as the
program text defines the ranges and reaches. However, a value at runtime has a dynamic
lifetime that in Algol 68 cannot always be correlated to a static range since serial-clauses
yield a value, thereby exporting them out of a range. In Algol 68, the dynamic lifetime of
a value is called its scope which is the largest serial-clause throughout which that value
exists.

The scope of a plain value, like 1 or TRUE, and the scope of a global name, is the whole
program. The scope of a local name is the smallest enclosing clause which contains its
generator (which may be hidden by an abbreviated variable-declaration, vide infra). In
general, values have scope and identifiers have range. In Algol 68 it is often, but not al-
ways, possible to check at compile time that names are not applied outside of their scopes.
Since this check is not always possible at compile time, a68g applies dynamic scope check-
ing at runtime.

The generator .OC REAL generates in the stack a local name of mode REF REAL which
can refer to a value of mode REAL. One could write:

read (LOC REAL)

but the created name is anonymous (sic) since it is not associated with an identifier; when
read terminates, the value is marooned since the name is no longer accessible.

Since Algol 68 is highly orthogonal, one can of course associate an identifier with a gen-
erated name by means of an identity-declaration:

REF REAL v = LOC REAL

A brief term for v is REAL variable. The generator 1L.OC REAL generates a name of mode
REF REAL although any unit yielding a value of mode REF REAL would do. After this
identity-declaration, v refers to a local memory location that stores a value of mode
REAL. One can for instance write:

read (v)
When read finishes, v refers to a value assigned to the name through the call to read.

Names can also be declared using a previously declared name on the right-hand side of the
identity-declaration:

REAL w;
REF REAL v = w

The identity-declaration makes v the same name as w, they are each other’s alias. An
assignment to one changes the value of the other as well.
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Declaring variables by means of an identity-declaration is verbose and yields rather
pedantic code. The abbreviated variable-declaration will let you write:

REAL v
which means exactly the same as:
REF REAL v = LOC REAL
The production rules for a variable-declaration are:
¢ variable declaration:
qualifier option, actual declarer {8.11}, variable definition list.

¢ variable definition list:
identifier {8.6.2}, initialisation option.

* initialisation: becomes {8.2} symbol, strong unit {8.9.5}.

Thus the declaration

REF REAL x = LOC REAL;

can be written as:

LOC REAL x

or, most commonly, since 1.OC is the default:
REAL x

It is important to note that an identity-declaration cannot be mixed with a variable-
declaration, so one cannot write:

REAL a := 0, b =1

An abbreviated declaration needs an actual-declarer followed by the identifier. An
actual-declarer contains information about the length of rows for instance, and is re-
quired when space is generated for an object, for instance in a variable-declaration or
a generator. When no space is generated, formal-declarers are required, for instance
in an identity-declaration. For INT, REAL, BOOL and CHAR the formal-declarer is the
same as the actual-declarer.

Whereas 1.0C will generate local names, HEAP will generate global names. Global names
have a scope as large as the program itself. The generator HEAP REAL generates a global
name of mode REF REAL which can refer to a value of mode REAL, so we could write:

REF REAL v = HEAP REAL

or, abbreviated:
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HEAP REAL v
a68g allows the symbol NEW as alternative for HEAP, hence we may also write:
REF REAL v = NEW REAL

Local names are allocated in the stack, and global names are allocated in the heap. As ex-
plained earlier, you should not assume that a global name is a constant address in memory.
During execution of an Algol 68 program the heap fills with data, but after some time it will
contain much data that is no longer accessible (temporary data, data from ranges that have
ceased to exist, et cetera). Algol 68 employs a garbage collector that restores heap space
by removing inaccessible data from the heap and compacting it. Heap compaction means
that addresses are not constant, though of course the association between name and value
remains unbroken when data is moved around. Note that even in the stack, data may be
moved, although currently a68g only performs garbage collection of the heap.

An example assignation is:
v := rate x elapsed

An assignation consists of a left-hand-side unit that yields a name, the becomes-symbol,
and a right-hand-side unit yields a value. The right-hand side of an assignation can be
any unit which yields a value whose mode is the derefrenced mode of the name on the
left-hand side. Note that becomes-symbol : = is not an operator. The production rules for
an assignation are:

¢ assignation: soft tertiary {8.9.4}, becomes-symbol, strong-unit.

When an identifier for a name is declared, the name can initialised to refer to a value
immediately:

REF REAL x = LOC REAL := pi, y = LOC REAL := 0
LOC REAL is a unit that here generates a name of mode REF REAL.

The right-hand side of an assignation is in a strong context so coercions as dereferencing
and widening are allowed. Thus the assignation

LOC REAL := 0

results in 0 being widened to 0.0 before being assigned to the name yielded by the genera-
tor.

When we write
X =Yy

the left-hand-side yields a name, which will be implicitly dereferenced to yield a REAL
value.
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Every construct in Algol 68 yields a value except a declaration, that yields no value. We
said earlier that the value of the left-hand side of an assignation is a name. In fact, the
value of the whole of the assignation is the value of the left-hand side. Because this is a
name, it can be used on the right-hand side of another assignation. For example:

x =y := 0

Since names are themselves values, a name may refer to a name. For example, suppose we
declare:

INT j, k
then the mode of both j and k is REF INT. We could also declare:
REF INT § 2, k 2

sothat § 2 and k 2 both have the mode REF REF INT. Now, according to the definition of
an assignation {8.9.5}, it is allowed to write:

INT 5, k;
REF INT j 2, k 2;
J 2 =]

because the identifier on the left has mode REF REF INT and the identifier on the right
has mode REF INT. The potential pitfall in assignations to REF variables will be clear
after coercions are discussed in a later chapter, but the idea can already be explained here:
Algol 68 can adapt the number of REFs of the source of an assignation to the number of
REF's of the destination, but not vice versa. Hence the assignation in:

INT 7;
REF INT k := j;
k =1

fails since the INT value 1 is not a value for a name of mode REF REF INT. A way around
this will be discussed later - the cast {6.5}, that forces coercions where one needs them.
The above assignation should be written forcing coercion of the destination to mode REF
INT:

REF INT (k) :=1

with the effect that both § and k will be associated with the value 1.

2.12 The value NIL

In Algol 68 there is only one denotation for a name, which is NIL meaning pointing to
no value. Compare this to NULL in C or NIL in Pascal. The mode of NI1. depends on the
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context. For example, consider:
REF INT k = NIL

then NIL has mode REF INT, in this context. Although NI is a name, it points to no value
and one cannot assign to it.

An assignation to k as declared above would cause a runtime error:

2 k :=0

1
a68g: runtime error: 1l: attempt to access NIL name of mode REF INT
(detected in particular program) .

An application of NIL is in section 5.8 on lists and trees where NIL is used to terminate a
list or (branches of) a tree.

2.13 Assignment combined with an operator

Consider the common assignation where the right-hand side is a simple formula.
a =a+1

Assignations of this kind are so common that the standard-prelude declares operators to
perform them. The above assignation can be written:

a +:= lora PLUSAB 1

which is read as a plus-and-becomes one. The left operand must be a name, and the right
operand may be any unit yielding a value that can be assigned to that name. The yield
of +:=1s the value of the left operand, that is, the name. The operator +: = is defined for
among others a left operand of mode REF INT or REF REAL. The REF INT version of the
operator expects an integer right operand. There are two REF REAL versions for this op-
erator, expecting a right operand of mode INT or REAL respectively. Analoguous operators
are —:=, »:=, /:=, %$:=and %~ : = with obvious meaning. Their alternative representations
are respectively MINUSAB , TIMESAB , DIVAB , OVERAB and MODAB . The operators OVERAB
and MODAB are only declared for operands with modes REF INT and INT. The priority
of all the operators combined with assignation is 1. Note that operators that perform
assignations constitute a formula, not an assignation.
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Stowed and united modes

3.1 Introduction

Stowed is a portmanteau for structured or rowed. We have dealt with plain values, that is,
values with modes INT, REAL, BOOL or CHAR. This chapter introduces compounded modes:
rows and structures. The first compounded mode introduced in this chapter is a row, which
is an ordered set of elements of a same mode, like in any other programming language.
For example, text is a string of characters and many of us use vectors and matrices which
are one - and two dimensional rows respectively. The other compounded mode introduced
in this chapter is a structure, which is an ordered set of objects not necessarily of a same
mode. This chapter introduces the basic modes STRING and COMPLEX, together with the
operations defined for them, and also modes BYTES and BITS will be introduced. Finally
this chapter describes united modes, that can store in one object a value of different modes.

3.2 Rows and row displays

A row consists of a number of elements with a common mode which cannot be vOID. The
mode of a row is written as the mode for each element preceded by square brackets, and is
called row of followed by the name of the mode of each element, such as row of int or row
of bool. As an example we write an identity-declaration for a row:

[] CHAR a = "tabula materna combusta est"

The mode on the left-hand-side is read row of char, which we will write throughout this
publication as [] CHAR. The unit on the right-hand-side of the equals-symbol is in this
case the denotation of a [] CHAR value. Note that we can use a formal-declarer in the
identity-relation since a will just be an alias of "tabula materna combusta est",
and the denotation has implicit bounds 1..27. If you want to declare a row variable, you
need to supply bounds. The declarer must be an actual-declarer. For instance, you
must write:

[1 : 27] CHAR a := "tabula materna combusta est"
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even though the bounds are implicit in this specific example. The difference with an
identity-declaration is the general situation that when a row is the source of an assig-
nation, also when the source appears in a variable-declaration, the source is copied into
the destination and the bounds of source and destination must match. The bounds must
match since Algol 68 does not regenerate the destination row unless the row is flexible
{3.5}. In an identity-declaration you only make an alias for a row descriptor, which does
not involve copying a row. The maximum number of elements in a row is equal tomax int.

Following is an identity-declaration for a name referring to a row:
REF [] INT i = LOC [1 : read int] INT

which can be abbreviated to a variable-declaration:

[1 : read int] INT 1

There are two things to notice about the first declaration. First, the mode on the left-
hand side is a formal-declarer. It says what the mode of the identifier is, but not what
its bounds are. Second, the generator on the right-hand side is an actual-declarer. It
specifies the bounds of the row to be generated. If the lower-bound is 1 it may be omitted,
so the above declaration could also have been written:

REF [] INT i = LOC J[read int] INT
This declaration can be abbreviated to a variable-declaration:
[read int] INT i

A dynamic name is one which can refer to a row whose bounds are determined at the
time the program is elaborated. This means that one can declare names referring to rows
of the size actually required, rather than some maximum size. The bounds of a row do
not have to start from 1. You are free to choose the value of the lower-bound. In this
identity-declaration:

REF [] INT i at 0 = HEAP [0 : 6] INT
or its equivalent variable-declaration:
HEAP [0 : 6] INT i

the bounds of the row will be [0 : 6]. The minimum value for a lower-bound is —-max
int. The maximum value for an upper-bound is max int. But remember that the maxi-
mum number of elements in a row is also max int, hence the following condition must be
satisfied:

—maz int < upper bound — lower bound + 1 < mazx int

The condition

upper bound — lower bound +1 < 0
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that occurs when you specify a lower-bound that exceeds the upper-bound, means that
a row is empty; it has no elements. Such a row is called a flat row in Algol 68 jargon.

As said, print prints plain values. Actually, print takes as argument a row of values to
be output, so it is valid to write:

[] INT i;

print ((i, new line))

which will print all elements of i. In case of multi-dimensional rows, elements are printed
in row-order, that is, the rightmost subscript varies most frequently. This is the same
order as C, but not as Fortran that stores in column-order. One can call new line and new
page explicitly to ensure that the next value to be output will start at the beginning of the
next line or page. With respect to rows, read behaves just like print in that a whole row
can be read in one call. A difference between read and print is that the values for read
must be names whereas print also accepts values. Note that if read is used to read a []
CHAR with fixed bounds as in:

REF [] CHAR sf = LOC [80] CHAR;
read (sf)

the number of characters specified by the bounds will be read, new line and new page
being called as needed.

Only [] CHAR has a denotation. Values for other rows are denoted by a construct called

a row-display. The production rule for a row-display reads:

¢ *row display:
begin {8.2} symbol, unit {8.9.5} list proper option, end {8.2} symbol.

A row-display consists of none or two or more units separated by comma-symbols and
enclosed by parentheses (or BEGIN and END ). Also [] CHAR has a row-display:

[] CHAR a = ("a", "b", "c", "d")

which means the same as:

[] CHAR a = "abcd"

It is important to note that the units in the row-display could be quite complicated. Any
unit yielding the a value of the mode of an element of the row is permitted. For example,
here is another declaration for a row with mode [] CHAR:

[] CHAR a = (blank, (CHAR z; read (z); z), """")

In this declaration the number of elements is 3. The lower-bound of a row-display
is always 1, so the upper-bound equals the number of elements in the row-display.
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Since a row-display is only allowed in a strong context, such as the right-hand side of an
identity-declaration or the source of an assignation, its constituent units are also in a
strong context. Thus, the units in a row-display can for instance be widened as in:

[] REAL zero vector = (0, 0, 0)

An empty row-display can be used to yield a flat row, which is a row with no elements.
We could initialise a line like this:

[] CHAR empty line = ()
In this particular case, the denotation for a flat [] CHAR can also be used:
[] CHAR empty line = ""

A row can have a single element but a row-display cannot have a single unit because
such construct would coincide with a closed-clause. This causes ambiguity in the uniting
coercion {6.5.2}. In this case and in a strong context, we write a single unit yielding a value
of correct mode for the element, which is coerced to a row with a single element by the
rowing rowing coercion {6.5.4}. For example:

[] INT z =0
yields a row with one element. A closed-clause could be used instead:
[] INT z = (0)

since a closed-clause is also a unit {8.9.1} but note that coercions move inside clauses
— coercions are not applied to enclosed-clauses but to the terminal units contained
therein. Again, a row-display can only be used in a strong context. It was mentioned
that the context of an operand is firm, so a row-display cannot appear as operand in a
formula. There is a way around this using a cast {6.5}, for example [] INT (1, 2, 3).
The denotation for a [] CHAR is not a row-display and does need a cast {6.5} to be used
as an operand in a formula.

One of the properties of a row is its number of dimensions. All the rows declared so far
have one dimension. The number of dimensions affects the mode. A two-dimensional row
of integers has mode

[, 1 INT
read row row of int, while a 3-dimensional row of reals has mode
[~ ] REAL

which reads row row row of real. Note that the number of comma-symbols is always one
less than the number of dimensions. In Algol 68, rows with any number of dimensions can
be declared. To cater for more than one dimension, each of the units of a row-display can
also be a row-display. The row-display for a row with mode [, ] INT could be:
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(1, 2, 3),
(4, 5, 6))

For two dimensions, it is convenient to talk of rows and columns. This is an identity-
declaration using the previous row display:

The first row of e is yielded by the row-display (1,2, 3) and the second row is yielded by
(4,5,6). The first column of e is yielded by the row-display (1,4), the second column by
(2,5), and the third column by (3,6). Note that the number of elements in each row is the
same, and the number of elements in each column is also the same, but that the number of
rows and columns do not need to be the same.

The mode of a row element can be any mode, including another row mode. For example:

[][] CHAR days = ("Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday",
"Sunday")

The mode here is read row of row of CHAR. This is another example using integers:
[1[] INT trapezium = (1, (2, 3), (3, 4, 5))

Note that all rows in a [, ] MODE object are of a same length while the rows ina [][]
MODE can be of different length.

3.3 Subscripts, slices and trims

Since a row is an ordered set of elements, each element of a row has one index, an integral
value, associated with it for each dimension. These integers increase by 1 from the first to
the last element in each dimension. For example, after the declaration:

[] INT odds = (1, 3, 5)

elements of odds can be accessed as odds [1] yielding 1, odds [2] yielding 3 and odds [3]
yielding 5. The integers 1, 2, 3 are called subscripts or indexers. Selecting elements from
a row is called slicing. A construction as odds[1] is called a slice. Slicing binds more
tightly than any operator, so a slice can be an operand in a formula. The related produc-
tion rules read:

¢ slice:
weak primary {8.9.2}, sub {8.2} symbol, indexer list, bus {8.2} symbol.
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¢ indexer:
subscript;
trimmer.

* trimmer:
lower index option,
colon {8.2} symbol,
upper index option,
revised lower bound option.

¢ subscript: meek integral unit {8.9.5}.
* lower index: meek integral unit {8.9.5}.
¢ upper index: meek integral unit {8.9.5}.

¢ revised lower bound:
at {8.2} symbol, meek integral unit {8.9.5}.

In the two-dimensional row:

the subscripts for 1 are [1, 1], thosefor3are [1, 3] and the subscripts for 9 are [3,
3]. A slice can also select a sub-row from a row. For example, after declaring v as above,
we can write:

v[il, ]

which yields the row denoted by the row-display (1,2,3). Note that the absence of an
indexer implicitly selects all elements for that dimension. Vertical slicing is also possible,
for instance:

vi[,3]

yields (3,6,9). The ability to make an alias for both rows and columns in a two-dimensional
row is a notable property of Algol 68.

Since Algol 68 rows are dynamic, their size is not always fixed at compile-time. The bounds
of a row can be interrogated using the operators LWB for the lower-bound, and UPB for
the upper-bound. The bounds of the first, or only, dimension can be interrogated using
the monadic form of these operators. When the row is multi-dimensional, the bounds are
interrogated using the dyadic form of LWB and UPB: the left operand is the dimension
being interrogated while the right operand is a unit yielding a row. The priority of the
dyadic-operators is 8. For example:
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[1 : 10, -5 5] INT r;

print (1 LWB r); # prints 1 #
print (1 UPB r); # prints 10 #
print (2 LWB r); # prints -5 #
print (2 UPB r); # prints 5 #

An extension of Algol 68 provided by a68g are the monadic-operator and dyadic-operator
ELEMS that operate on any row. The dyadic version gives the number of elements in the
specified dimension of a row, and the monadic version yields the total number of elements
of a row. For example:

[1 : 10, -5 : 5] INT r;

print (1 ELEMS r); # prints +10 #
print (2 ELEMS r); # prints +11 #
print (ELEMS r) # prints +110 #

The monadic-operator returns the total number of elements while the dyadic-operator
returns the number of elements in the specified dimension, if this is a valid dimension.

Next to ELEMS , a68g offers operator ELEM to provide compatibility with the vintage A1L.GOL68C
compiler. This is an example of a subscript using ELEM:

[] INT first primes = (1, 3, 5, 7, 11);
print (first primes[1l]);
print (1 ELEM first primes); # prints two times +1 #

In a 3-dimensional row, both 2-dimensional and 1-dimensional slices can be produced.
Given the declaration:

[, ]

((
(
(9,
(13, 14, 15, 16))

these are the yields of different slices:

1. r[2, 2] yields6

2. r[3, ] yields (9,10,11,12)

3. r[, 2 UPB r] yields (4,8,12,16)
4. r[3, 2] yields 10

5. r[2, ] yields (5,6,7,8)

6. r[, 3] yields (3,7,11,15)
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A slice can be used to change the bounds of a row using the @ construction. For example,
after the declaration:

[] CHAR digits = "0123456789"[@Q0]
the bounds of digits are [0 : 9]. Note that @ can also be written AT .

If you slice a name, you want the sliced element to be a name as well, otherwise you could
not assign to an element of the row. The important rule in Algol 68 is that if you slice an
object of mode REF [...] MODE, the yield will be of mode REF MODE. So if you first write:

[1 : products] REAL price;

one can later write:

price[l] := 0;
since slicing a [] REAL variable yields a REAL variable. Again, if you slice an object of
mode [...] MODE, the yield will be of mode MODE. If you slice an object of mode REF [...]

MODE, the yield will be of mode REF MODE. But if you slice an object of mode REF REF [...]
MODE, the yield will still be of mode REF MODE. This coercion is called weak dereferencing
{6.5}.

A trimmer makes a slice select a sub-row from a row. A trimmer reads

first element : last element. The positions first element and last element
are meek-integral-units. If first element is omitted, the lower-bound for that di-
mension is taken, and if 1ast element is omitted, the upper-bound for that dimension
is taken. Omission of both subscripts yields all elements in the specific dimension. Trim-
ming is particularly useful with values of mode [] CHAR. Given the declaration:

[] CHAR quote = "Habent sua fata libelli"™

the trimmers:

quote[: 6]
quote[8 : 10]
quote[l2 : 15]

yield the first three words. The lower-bound of a trimmer is 1 by default, but may be
changed by the use of AT or @. The AT construction is called a revised-lower-bound. For
example, quote[: 6] hasbounds [1 : 6], but quote[: 6 AT 2] quote[: 6Q2] has
bounds [2 : 7]. a68g allows you to replace the colon-symbol : by .. in bounds and
trimmers, which is the Pascal style. Hence in a68g next trimmers are identical:

quote[: 6] and quote[.. 6]
quote[8 : 10] and quote[8 .. 10]
quote[l2 : 15] and quote[l2 .. 15]
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One can assign values to the elements of a row either individually or collectively. One
can access an individual element of a row by subscripting that element. The rules of the
language state that a subscripted element of a row name is itself a name. In fact, the
elaboration of a slice of a row name creates a new name. Unless you store the new name
by means of an identity-declaration, the new name will cease to exist after the above
assignation has been elaborated.

There are two ways of assigning values collectively. First, this can be done with a row-
display or a [] CHAR denotation. For example:

[1 : 5] INT first primes := (1, 3, 5, 7, 11);

Note that the bounds of both first primes and the row-display are [1 : 5]. In the
assignation of a row, the bounds of the row on the right-hand side must match the
bounds of the row name on the left-hand side. If they differ, a run time error is gener-
ated. The second way of assigning to the elements of a row collectively is to use as the
source of the assignation any unit yielding a row of the correct mode with the required
bounds.

3.4 Operators for rows

Rows of CHAR are so common that dyadic-operators are available implementing concate-
nation and comparison of text. The concatenation operator + is defined for all combinations
of CHAR and [] CHAR. Thus, the formula:

" abc" + "d"

yields the value denoted by "abcd". The operator has a priority of 6, the same as addition;
remember that all operators with the same symbol have the same priority in Algol 68.

Multiplication, meaning repeated concatenation, of values of mode CHAR or [] CHAR is
defined using the operator « . The operator takesa [] CHAR operand and a INT operand,
and the yield has mode [] CHAR. For example, in the declaration:

[] CHAR word = 3 * "ab"

the formula yields "ababab". The formula may also be written with the integer as the
right-hand operand "ab" » 3. In both cases, the operator only makes sense with a posi-
tive integer.

The operators = and /= are also defined for operands of mode [] CHAR. Corresponding
elements must be equal if the = operator is to yield TRUE. Thus:

"a" = n abC"

yields FALSE. Note that the bounds do not have to be the same:
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([] CHAR a = "Rose"[Q@0], b = "Rose"; a = b)
yields TRUE. The negation of = is /= which test for inequality. So the formula:

"Algol" /= "Algol"

yields FALSE. Alternative representations of /= are ~=, = and NE . The ordering operators
<,>,<=and >= can be used to compare values of mode [] CHAR in the same way as = and
/=. For values of mode [] CHAR, ordering is alphabetic. The formula:

"abcd" > "abCC"

yields TRUE. Two values of mode [] CHAR of different length can be compared. For exam-
ple, both:

"aaa" <= "aaab"

"aaa" <: "aaaa"

yield TRUE. Alternative representations for these operators are LT and GT for < and > and
LE and GE for <= and >= respectively. Because the rowing coercion is not allowed for firm
operands in formulas, the comparison operators are declared in the standard-prelude
for mixed modes CHAR and [] CHAR.

Note that apart from values of mode [] CHAR and the interrogation operators LWB, UPB,
no operators are defined in the Revised Report for rows. a68g, further to ELEMS, defines
pseudo-operators for vectors and matrices (section 3.7) and provides operators to support
linear algebra (section 10.10).

3.5 Flexible names and the mode STRING

In the previous section, we declared row names. The bounds of the row to which the name
can refer are included in the generator. In subsequent assignations, the bounds of the
new row to be assigned must be the same as the bounds given in the generator. In
Algol 68, it is possible to declare names which can refer to a row of any number of elements
(including none) and, at a later time, can refer to row with a different number of elements.
These are called flexible names. Consider this identity-declaration for a flexible name:

REF FLEX [] INT fn = LOC FLEX [1 : 0] INT
or, abbreviated:
FLEX [1 : 0] INT fn

There are several things to note about this declaration:
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1. the mode of the name is not REF [] INT, but REF FLEX [] INT.FLEX means that
the bounds of the row to which the name can refer can differ from one assignation
to the next.

2. the bounds of the name generated at the time of the declaration are [1 : 0].
Since the upper-bound is less than the lower-bound, the row is said to be flat; it
has no elements at the time of its declaration.

One can now assign rows of integers to fn:

fn = (1, 2, 3, 4)

The bounds of the row to which £n now refers are [1 : 4]. Again, we can write:
fn = (2, 3, 4)

Now the bounds of the row to which fn refers are [1 : 3].One can even write:
fn := 7

in which the right-hand side will be rowed to yield a one-dimensional row with bounds
[1 : 1], and:

fn = ()
giving bounds of [1 : 0].

If a flexible name is sliced, the resulting name is called a transient name because it can only
exist while that flexible name is not deallocated. Therefore transient names have restricted
use, the general rule being that a transient name cannot be stored for later reference. For
example, consider the declaration and assignation:

REF FLEX [] CHAR cl = LOC FLEX [1 : 0] CHAR := "abcdef";
Suppose now we could have the declaration:

REF [] CHAR 1lcl = cl[2 : 4]; # Wrong! #

followed by this assignation:

cl := "z";

Now 1c1 no longer refers to anything meaningful. Thus transient names cannot be stored:
they cannot be linked to identifiers, nor used as parameters for a routine (whether op-
erator or procedure). They can be the destination in an assignation, as in:

STRING s "abcdefghijklmnopgrstuvwxyz";
s[2 : 7] := s[9 : 14]

where the name yielded by s[9 : 14] is immediately dereferenced. So the assignation:
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s[2 : 7] := "abc"
would produce a run time error.

What has not been made apparent up to now is a problem arising from the ability that we
can have rows of any mode except VOID, so also rows of rows, et cetera. Now consider the
declaration:

FLEX [1 : O][1 : 3] INT semiflex

Because the mode of semiflex is REF FLEX [][] INT, when it is subscripted, the mode
of each element is REF [] INT with bounds [1 : 3]. Clearly, after the declaration,
semiflex has no elements, so how would we know about dimensions of the REF [] INT

sub-row of semiflex? According to the Revised Report a row must have a ghost element,
inaccessible by subscripting, to preserve information on bounds in case no elements are
present. This ghost element prohibits writing:

semiflex := LOC [1 : 4][1 : 4] INT

Algol 68 has been criticised for offering flexible rows, but not a simple way to extend an
existing row with a number of elements while leaving the present elements untouched.
This has to be achieved by declaring a new (larger) flexible row, assigning existing elements
to it, and then copying back:

INT n = read int;
FLEX [n] INT u;

# Extend u by one element #
[UPB u + 1] INT v;

v[: UPB u] := u;

u = v

after which the row is extended with one yet uninitialised element.

The mode STRING is defined in the standard-prelude as FLEX [1 : 0] CHAR. That is,
the identity-declaration:

REF STRING s = LOC STRING
has exactly the same effect as the declaration:
REF FLEX [] CHAR s = LOC FLEX [1 : 0] CHAR

You will notice that although the mode-indicant STRING appears on both sides of the
identity-declaration for s, in the second declaration the bounds are omitted on the
left-hand side (the mode is a formal-declarer) and kept on the right-hand side (the actual-
declarer). Without getting into grammatical explanations, just accept that if you define a
mode like STRING, whenever it is used on the left-hand side of an identity-declaration
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the compiler will ignore the bounds inherent in its definition. One can now write:
s := "String"

which gives bounds of [1 : 6] to s. One can slice that row to get a value with mode REF
CHAR which can be used in a formula. Often, where [] CHAR appears, it may be safely
replaced by STRING. This is because it is only names which are flexible so the flexibility of
STRING is only available in REF STRING declarations.

When reading STRING values, reading will not go past the end of the current line!. If the
reading position is already at the end of the line, the row will have no elements. When
reading a STRING, new line must be called explicitly for transput to continue.

Two operators are defined in the standard-prelude which take an operand of mode REF
STRING: PLUSAB , whose left operand has mode REF STRING and whose right operand
has mode STRING or CHAR, and PLUSTO , whose left operand has mode STRING or CHAR
and whose right operand has mode REF STRING. Using the concatenation operator + ,
their actions can be summarised as follows:

Il
v
+
o

1. a PLUSAB b means a

2. a PLUSTO bmeansb := b + a

Thus PLUSAB concatenates b onto the end of a, and PLUSTO concatenates a to the beginning
of b. Their alternative representations are +:= and +=: respectively. For example, if a
refers to "abc" and b refers to "def", after a PLUSAB b, a refers to "abcdef", and after
a PLUSTO b, b refers to "abcdefdef" (assuming the PLUSAB was elaborated first).

3.6 Vectors, matrices and tensors

Algol 68 Genie has extensions to support vectors, matrices and tensors provided they are
represented as rows. Next section shows how to extract a transpose, or a diagonal from a
matrix. Furthermore, a68g offer a basic vector and matrix interface operating on Algol 68
rows of mode:

[] REAL # vector #

[, ] REAL # matrix #

[] COMPLEX # complex vector #
[, 1] COMPLEX # complex matrix #

This part of the library is described in section 10.10.

1For details of string terminators see {7.7}.
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3.7 Torrix extensions

Algol 68 Genie implements pseudo-operators as described by [Torrix 1977]. These are of
particular interest to vector - and matrix algebra. Original Torrix code implements these
symbols as operators on one- and two-dimensional rows of real and complex numbers. The
pseudo-operator implementation offered by a68g is more general as it works on one- and
two-dimensional rows of any mode. The syntactic position of these pseudo-operator expres-
sions is at the same level as a formula, which is a tertiary as described in chapter 8.

Next list compiles the definitions of these pseudo-operators. Note that all yield a descriptor.
This means that the yield of the pseudo-operator refers to the same elements as the row
operated on, only the indices are mapped. In the list below a is a two-dimensional row:

all a1 . A1n
a1 ago . aon
a =
Aml Ap2 ... Qmn
u is a one-dimensional row:
Ul
U2
u =
Up,

and i, j and k are integers. Next pseudo-operators are available:

1. TRNSP constructs for a matrix, without copying, a descriptor such that:
(TRNSP a) [J, 1] = ali, 7]

for valid i and S.

2. DIAG constructs for a square matrix, without copying, a descriptor such that:
(k DIAG a) [1i] = ali, 1 + k]
for valid i and k. The monadic form of DIAG is equivalent to 0 DIAG ...

3. COL constructs, without copying, a descriptor such that:
(k COL u) [i, k] = uli]

for valid i and k. The monadic form of COL is equivalent to 1 COL

4. ROW constructs, without copying, a descriptor such that:
(k ROW u) [k, 1] = uli]

for valid i and k. The monadic form of ROW is equivalent to 1 ROW ...
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These pseudo-operators yield a new descriptor, but do no copy data. They give a new way
to address the elements of an already existing one - or two dimensional row. For example,
next code sets the diagonal elements of a matrix:

[3, 3] REAL matrix;
DIAG matrix := (1, 1, 1);
print (DIAG matrix)

This will print three ones as the result of the assignation. These pseudo-operators deliv-
ering new descriptors to existing data cannot be coded in standard Algol 68. There is an
analogy with slicing a name. If you apply an above pseudo-operator to an object of mode
[...] MODE, the yield will be of mode [...] MODE, but the number of dimensions will of
course change. If you operate on an object of mode REF [...] MODE, the yield will be of
mode REF [...] MODE. But if you operate on an object of mode REF REF [...] MODE, the
yield will still be of mode REF [...] MODE. This coercion is called weak dereferencing {6.5}.

3.8 A note on brackets

Algol 68 allows square brackets, used when working with rows, to be replaced with paren-
thesis. a68g supports this feature so in stead of:

[3, 3] REAL matrix;
DIAG matrix := (1, 1, 1);
print ((DIAG matrix) [1])

you may write:

(3, 3) REAL matrix;
DIAG matrix := (1, 1, 1);
print ((DIAG matrix) (1))

as long as you close [ with ] and ( with ).

3.9 Structured modes

We have seen how a number of individual values can be collected together to form a row
whose mode was expressed as row of mode. The principal characteristic of rows is that all
the elements have the same mode. Often the value of an object cannot be represented by
a value of a single object of a standard mode. Think for instance of a book, that has an
author, a title, year of publication, ISBN, et cetera. A structure is another way of grouping
data elements where the individual parts may be of different modes. In general, access-
ing the elements of a row is determined at run time by the elaboration of a slice. In a
structure, access to the individual parts, called fields, is determined at compile time. In
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some programming languages, structured modes are called records. The mode constructor
STRUCT is used to create structured modes. This is a identity-declaration involving a
structure:

STRUCT (INT index, STRING title) s = (1, "De bello gallico")
The mode of the structure is:
STRUCT (INT index, STRING title)

The terms index and title are called field selectors and are part of the mode. They are
not actually identifiers, even though the production rule for identifiers applies to them.
Their only use is to provide access to fields in a structured value. The expression to the
right of the equals-symbol is called a structure-display that has this production rule:

¢ *structure-display: strong-collateral-clause.

Like row-displays, structure-displays can only appear in a strong context. A structure-
display has two or more fields; allowing a single-field structure-display would introduce
ambiguity in Algol 68 syntax. In a strong context, a68g can determine which mode is
required and so it can tell whether a row-display or a structure-display has been pro-
vided. We could now declare another such structure:

STRUCT (INT index, STRING title) t = s
and t would have the same value as s.
One can write a structure declaration with different field selectors:

STRUCT (INT count, STRING title) ss =
(1, "Reflexions sur la puissance motrice du feu")

which looks almost exactly like the first structure declaration above, except that the field
selector index has been replaced with count. The structure ss has a different mode from
s because not only must the constituent modes be the same, but the field selectors must
also be identical.

Structure names can be declared:

REF STRUCT (INT index, STRING title) sn =
LOC STRUCT (INT index, STRING title)

Because the field selectors are part of the mode, they appear on both sides of the declara-
tion. The abbreviated form is:

STRUCT (INT index, STRING title) sn

We could then write:

50



INFORMAL INTRODUCTION TO ALGOL 68

sn = S

in the usual way, but not:

sn = SS

The mode of a field can be any mode except VOID. For example, we can declare:
STRUCT (REAL x, REAL vy, REAL z) vector

which can be abbreviated to:

STRUCT (REAL x, y, z) vector

and later on write an assignation:

vector := (0, 0, 0)

where the value 0 would be widened to 0. 0 since the right hand side is in a strong context.
A structure can also contain another structure:

STRUCT (STRING ¢, STRUCT (REAL x, y) point) ori = ("O", (0, 0))

In this case, the inner structure has the field selector point with field selectors x and y. If
size of rows is relevant, as in generators and variable-declarations, the mode of a field
selector is an actual-declarer. Otherwise, as in an identity-declaration, the mode is a
formal-declarer.

The field selectors of a structured mode are used to extract the individual fields of a struc-
ture by means of a selection that has following production rule:

¢ selection: identifier {8.6.2}, of-symbol, secondary {8.9.3}.

For example, given this declaration for the structure s:

STRUCT (INT index, STRING title) s = (1, "De bello gallico")
we can select the first field of s using the selection:

index OF s

The mode of the selection is INT and its value is 1. Note that the construct OF is not an
operator, as is its equivalent in C. The second field of s can be selected using the selection:

title OF s

whose mode is STRING with value "De bello gallico". The field selectors cannot be
used on their own: they can only be used in a selection. A selection binds more tightly
than any operator, so a selection can be used as an operand. However, a slice or a call
{5} binds more tightly than a selection. Consider the formula:
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[inventory size] STRUCT (INT index, STRING title) inventory;

index OF inventory[l] + 1

then first inventory[1] is elaborated, then the selection, and finally the addition. Some-
times you need to write parenthesis — actually, an enclosed-clause — to ensure correct
elaboration of a construct; consider for instance:

STRUCT ([inventory size] INT indices, STRING title) inventory;

;igdices OF inventory) [1] + 1

Would you have written the last unit as

indices OF inventory[l] + 1

a runtime error would occur since this strictly means
(indices OF (inventory[1l])) + 1

which involves slicing of the value inventory that is not a row in this case, and a68g will
protest:

32 indices OF inventory[1l] + 1

1
a68g: error: 1: REF STRUCT ([] INT indices, STRING title) identifier does
not yield a row or procedure (detected in particular-program) .

The two fields of the structure:
STRUCT (STRING c¢, STRUCT (REAL x, y) point) ori
can be selected by writing:

c OF ori
point OF ori

and their modes are STRING and STRUCT (REAL x, y) respectively. Now the fields of the
inner structure point of ori can be selected by writing:

x OF point OF ori
y OF point OF ori

and both selections have mode REAL. Note that nested selection proceeds from right-to-
left.

If you want to assign to a field, the selection of that field must somehow yield a name.
As with rows, Algol 68 applies the rule that a field selected from a name is itself a name.
Consider for instance the structure name sn declared by:
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STRUCT (INT index, STRING title) snj;
The mode of sn is:

REF STRUCT (INT index, STRING title)
This means that the mode of the selection:
index OF sn

must be REF INT, and the mode of the selection:
title OF sn

must be REF STRING. That is, the modes of the fields of a structure name get preceded
by REF. Otherwise you would not be able to assign to a single field in a structured object.
The important general rule is that if you select a field with mode MODE from an object with
mode STRUCT (...), then the yield will be of mode MODE as well. If you select a field with
mode MODE from an object with mode REF STRUCT (...), then the yield will be of mode
REF MODE. But if you select a field with mode MODE from an object with mode REF REF
STRUCT (...), then the yield will still be of mode REF MODE. This coercion is called weak
dereferencing {6.5}. Thus, instead of assigning a complete structure using a structure-
display, one can assign values to individual fields. That is, the assignation:

sn := (2, "The republic")
is equivalent to the assignations:

index OF sn := 2;
title OF sn := "The republic"

except that the two units in the structure-display are separated by a comma-symbol
and hence are elaborated collaterally.

Given the declaration:

STRUCT (CHAR mark, STRUCT (REAL x, y) point) ori;

the selection:

point OF ori

has mode REF STRUCT (REAL x, y),and so you could assign directly to it:
point OF ori := (0, 0)

as well as to its fields:

x OF point OF ori
y OF point OF ori

[l
o o
~
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Structures are read or printed field-by-field from left to right if the modes of every field can
be transput. For example, the following program fragment will print a complex number:

STRUCT (CHAR mark, STRUCT (REAL x, y) point) ori := ("O", (0, 0));
print ((ori, new line))

For details of how this works, see the remarks on straightening {7.10}.

If a structure contains rows, the structure declaration should only include required bounds
if it is an actual-declarer. For example, we could declare:

STRUCT ([] CHAR forename, surname, title)
lecturer = ("Albert", "Einstein", "Dr")

where the mode on the left is a formal-declarer (remember that the mode on the left-hand
side of an identity-declaration is always a formal-declarer). When declaring a name,
an actual-declarer precedes the identifier, and bounds must be included. A suitable
declaration for a name which could refer to lecturer would be:

STRUCT ([7] CHAR forename, [6] CHAR surname, [3] CHAR title)
new lecturer;

but we cannot assign lecturer to it. A better declaration would use STRING :
STRUCT (STRING forename, surname, title) person

in which case we could now write:

person := lecturer

Using field selection, we can write:

title OF person

which would have mode REF STRING. Thus, using field selection, we can assign to the
individual fields of person:

surname OF person := "Schweitzer"

When slicing a field which is a row, it is necessary to remember that slicing binds more
tightly than selecting {8}. Thus the first character of the surname of person would be
accessed by writing:

(surname OF person) [1]

which would have mode REF CHAR. The parentheses ensure that the selection is elabo-
rated before the slicing. Similarly, the first five characters of the forename of person would
be accessed as:
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(forename OF person) [: 5]
with mode REF [] CHAR.

In the last section, we considered rows in structures. What happens if we have a row each
of whose elements is a structure? If we had declared:

[10] STRUCT (REAL re, im) =z

then the selection re OF z would yield a name with mode REF [] REAL and bounds
[1 : 10].Because z is a name, one can assign to it:
re OF z := (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

This extraction of a row of fields from a row of a structured value is called multiple selec-
tion. Multiple selection yields a new descriptor, so one could write aliases for the fields:

[10] COMPL z;
[] REAL x = re OF z, y = im OF z

but note that both x and y are aliases, so any assignation to either one would also affect
z. To avoid this side effect, the rows should be copied by a variable-declaration:

[10] STRUCT (REAL re, im) z
[10] REAL x := re OF z, y := im OF z

after which both x and y contain the actual values of z but have no connection to z anymore.
Selecting the field of a sliced row of structured elements is straightforward. Since the row
is sliced before the field is selected, no parentheses are necessary. Thus the real part of the
third STRUCT (REAL re, im) of z above is given by the expression:

re OF z[3]

3.10 Field selections

Algol 68 was one of the first languages to introduce structured values, and the production
rule for a selection:

¢ selection: identifier {8.6.2}, of-symbol, secondary {8.9.3}.

nowadays appears a bit odd since this syntax evaluates from right-to-left while most other
languages evaluate selections from left-to-right. Compare for instance the Algol 68 con-
struction:

x OF point OF z
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which in C or Pascal would read?:
z.point.x

a68g offers alternative syntax to the classic Algol 68 selection, called a field-selection,
which is described by the production rule:

¢ field selection:
weak primary {8.9.2}, sub {8.2} symbol, identifier {8.6.2} list, bus {8.2} sym-
bol.

by which one can write above example in a68g as:
z [point, x] or z (point, Xx)

which is elaborated as if you would have written:
x OF point OF z

The field-selection is a primary and is very similar to a call (see 5.3) or a slice. Unlike
a selection, a field-selection cannot perform multiple selection; if it could, then for ex-
ample in a range containing the declaration INT im, [3] COMPL z,the primary z[im]
would be ambiguous.

3.11 Mode declarations

Structure declarations are very common in Algol 68 programs because they are a con-
venient way of grouping disparate data elements, but writing out modes in every declarer
is clumsy and error-prone. Using the mode-declaration, a new mode-indicant can be
declared to indicate a mode. Relevant production rules are:

* mode declaration:
mode {8.2} symbol, mode definition list.

* mode definition:
mode indicant {8.6.1}, equals {8.2} symbol, actual declarer {8.11}.

An indicant can be an upper-case tag as RECORD or VECTOR. a68g accepts a tag that starts
with an upper-case letter, optionally followed by upper-case letters or underscores. Since
spaces are not allowed in an upper-case tag to avoid ambiguity, underscores can be used to
improve legibility. The use of underscores in tags is not allowed in standard Algol 68. For
example, the mode-declaration:

2For convenience we ignore the distinction between the . and —> operators.
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MODE VECTOR

STRUCT (REAL x, vy, z)

or

MODE VECTOR [1 : 3] REAL

makes VECTOR a synonym for the mode specification on the right-hand side of the equals-
symbol, and new objects using VECTOR can be declared in the ordinary way:

VECTOR vec = (1, 2, 3);

VECTOR vn := vec;

[10] VECTOR va;

MODE TENSOR = STRUCT (VECTOR x, VY, 2Z)

The mode STRING is declared in the standard prelude as:
MODE STRING = FLEX [1 : 0] CHAR

Note that bounds are conveniently ignored when a newly declared indicant is used as
a formal-declarer, for instance in an identity-declaration. Now consider this small
program using matrix objects:

INT n;

MODE MATRIX = [n, n] REAL;
read (n);

MATRIX m;

In above declaration of mode MATRIX, the bounds will be elaborated at the declaration
of any name of mode MATRIX. When MATRIX is used as a formal-declarer, the bounds
are ignored and not evaluated.

Suppose you want a mode which refers to another mode which has not yet been declared
before, and a second mode that refers to the first mode, for example:

MODE A = STRUCT (STRING title, REF B next),
B = STRUCT (STRING name, REF A next)

This can for instance not be written in Pascal or C without using some sort of forward dec-
laration in Pascal or incomplete type in C. In Algol 68, tags like identifiers, indicants or
operators do not have to be declared before they are applied, so one can straightforwardly
declare the two modes as listed above. The syntax of Algol 68 forces that a mode cannot give
rise to (1) an infinitely large object or (2) endless coercion. Using a mode-declaration, you
might be tempted to declare a mode such as:

MODE CIRCULAR = STRUCT (INT i, CIRCULAR c) CO wrong! CO
but this is not allowed since a declaration:

CIRCULAR z;
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would quickly consume all memory on your system and then complain that memory is
exhausted. Next declaration will also give an infinitely large object:

MODE BINARY = [1 : 2] BINARY
and is therefore not allowed. However, there is nothing wrong with modes as:
MODE LIST = STRUCT (STRING s, REF LIST next)

because only a reference to itself is declared within the structure. Therefore REF shields
a mode definition from its application.

3.12 Complex numbers

The standard-prelude contains the mode-declaration:
MODE COMPL = STRUCT (REAL re, im)

a68g considers the symbols COMPL and COMPLEX as equivalent.
Multi-precision declarations exist in a68g:

MODE LONG COMPL = STRUCT (LONG REAL re, im);
MODE LONG LONG COMPL = STRUCT (LONG LONG REAL re, im)

As with modes INT and REAL, the length of LONG LONG modes can be made arbitrarily
large through the option --precision {9.6.4}. As described in the previous section, the indi-
cant COMPL can be used wherever a mode is required. From the section on field selection,
it is clear that in the declarations:

COMPL z = read complex;
COMPL w := z

the selection:

re OF z

yields a value of mode REAL, while the selection:
re OF w

yields a value of mode REF REAL. The predefined monadic-operator RE takes a COMPL
operand and yields its re field with mode REAL. Likewise, the monadic-operator IM
takes an operand of mode COMPL and yields its im field with mode REAL. Note that the
formula RE w yields a value of mode REAL, not REF REAL, because RE is an operator
whose single operand has mode COMPL. In the above expression, w will be dereferenced
before RE is elaborated. Thus it is not valid to write:
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RE w := 0
which should be written as:
re OF w := 0

In a strong strong context, a real number will be widened to a complex number. So, for
example, in the following identity-declaration:

COMPL z = pi
z will have the same value as if it had been declared by:
COMPL z = (pi, 0)

Next to using a row-display to denote a complex number, the predefined dyadic-operator
I can be used taking left- and right-operands of any combination of REAL and INT yielding
a COMPL value. It has a priority of 9. For example -1 T 1 yields i — 1. Of course, there is a
declaration for 1 that takes left- and right-operands of any combination of LONG REAL
and LONG INT and yields a LONG COMPL value, and a declaration that takes left- and
right-operands of any combination of LONG LONG REAL and LONG LONG INT and yields
a LONG LONG COMPL value.

Many operators you need to manipulate complex numbers have been declared in the stan-
dard prelude. One can use the monadic-operators + and - which have also been declared
for values of mode coMPL. For a complex number z, CONJ z yields RE z I - IM z. The
operator ARG gives the argument of its operand in the interval < —m, 7]. The monadic-
operator ABS for a complex number is defined as:

OP ABS = (COMPL z) REAL: sgrt (RE z x% 2 + IM z #*x 2)

Note that in the formula RE z «x 2, the operator RE is monadic and so is elaborated first.
The dyadic-operators +, —, » and / are declared for all combinations of complex num-
bers, real numbers and integers, as are the comparison operators = and /=. The dyadic-
operator * + is declared for a left hand operand of mode COMP1 and a right hand operand
of mode INT. The assignation operators TIMESAB , DIVAB , PLUSAB , and MINUSAB all take
a left operand of mode REF COMPL and a right operand of modes INT, REAL or COMPL.
In fact, a68g supplies operator-declarations for all combinations of operand precision,
always resulting in a value with longest precision of either operands. a68g implements
routines for complex arithmetic that circumvent unnecessary overflow when large real or
imaginary values are used. Naive implementation of for example division or ABS can over-
flow while the result is perfectly representable.

Routines are the subject of a later chapter, however we have already introduced mathe-
matical functions for real values. Algol 68 Genie extends the Revised Report requirements
for the standard prelude by also defining mathematical functions for mode COMPLEX. Note
that a runtime error occurs if either argument or result are out of range. Multi-precision
versions of these routines are declared and are preceded by either 1ong or 1long long, for
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instance long complex sqrt or long long complex 1n. A complete list of available
functions is in section 10.6.2.

3.13 Archaic modes BITS and BYTES

3.13.1 Mode BYTES

Mode BYTES is a compact representation of [] CHAR. It is a structure with an inaccessible
field that stores a row of characters of fixed length in a compact way. A fixed-size object of
mode BYTES may serve particular purposes (such as file names on a particular file system)
but the mode appears of limited use - it was useful in a time when memories were small.

On modern hardware there is no reason to use an object of mode BYTES in stead of a []
CHAR. For reasons of compatibility with old programs, a68 implements modes BYTES and
LONG BYTES. Since these modes are of little practical use they are not extensively treated
here and you are referred to chapter 10 that lists available operators and procedures for
BYTES and LONG BYTES.

3.13.2 Mode BITS

Mode BITS is a compact representation for a [] BOOL. The BOOL values are represented
as single bits. A BITS value is tradionally stored in a machine word. Alternatively a BITS
value can be interpreted as a whole number in W, comparable to an unsigned integer in
C. The typical application of BITS is for masks, or to represent small sets where each bit
is associated with a set member. The advantage of BITS is efficiency: a value uses little
storage but also parallel operation on bits for a number of operators. The number of bits in
one machine word is given by the environment enquiry bits width ; on modern hardware
this value on a68g will be either 32 or 64.

It is important to note that in Algol 68 the most significant bit in a BITS value is bit 1
and the least significant bit is bit 32 (or bit 64). Nowadays this seems counter-intuitive,
but envisage reading a [] BOOL from left to right; then the most significant bit is the first
element in the row and therefore must be bit 1. Also, when Algol 68 was designed this
was the way mainframes as the IBM 370 or PDP 10 stored data - the sign bit was bit 0,
the most significant bit was bit 1, and the least significant bit was either bit 31 (32-bit
machines) or bit 35 (36 bit machines).

Sometimes you want to use bits values with more bits than offered by BITS. Algol 68 Genie
supports modes LONG BITS and before version 3 also LONG LONG BITS.The range of LONG
LONG BITS is default circa twice the length of LONG BITS but can be made arbitrary large
through the option precision {9.6.4}. Below are the respective bits w